A Note on Hasse's Theorem Concerning the Class Number Formula of Real Quadratic Fields

Noriaki KIMURA
Nihon University
(Communicated by T. Kakita)

Let p be a prime with $p \equiv 1(\bmod 4)$ and h the class number of the real quadratic field $\boldsymbol{Q}(\sqrt{ } \bar{p})$. Let $\varepsilon>1$ be a fundamental unit of $\boldsymbol{Q}(\sqrt{\bar{p}})$. As well-known, the Dirichlet's class number formula is stated in the form

$$
\begin{equation*}
\varepsilon^{h}=\frac{\prod_{b} \sin \frac{\pi b}{p}}{\prod_{a} \sin \frac{\pi a}{p}}, \tag{1}
\end{equation*}
$$

where a and b runs over quadratic residues and quadratic non-residues between 0 and $p / 2$ respectively. As h is a positive integer, the righthand side of (1) is a unit in $Q(\sqrt{p})$. So ε^{h} is written in the form $u+v \sqrt{p}, u, v \in \mathbf{Q}$. The explicit formula of u and v is given by H. Hasse. (See [1].) In this paper we shall prove an alternative form of Hasse's theorem, which is slightly simpler in structure.

Let g be a fixed positive quadratic non-residue $\bmod p$ and let $a=$ (a_{1}, \cdots, a_{n}) and $b=\left(b_{1}, \cdots, b_{n}\right)$ be systems of $n=(p-1) / 4$ quadratic residues a_{ν} and quadratic non-residues b_{ν} with $0<a_{\nu}, b_{\nu}<p / 2$. Furthermore let $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$, where $-(g-1) \leqq x_{\nu} \leqq g-1$ and any x_{ν} is odd or even, according as g is even or odd, be a solution of the congruence, respectively,

$$
\begin{aligned}
& \boldsymbol{a} \boldsymbol{x}=a_{1} x_{1}+\cdots+a_{n} x_{n} \equiv a_{\nu} \quad(\bmod p), \\
& \boldsymbol{a} \boldsymbol{x}=a_{1} x_{1}+\cdots+a_{n} x_{n} \equiv b_{\nu} \quad(\bmod p),
\end{aligned}
$$

and

$$
\boldsymbol{a x}=a_{1} x_{1}+\cdots+a_{n} x_{n} \equiv 0 \quad(\bmod p) .
$$

We write
Received May 26, 1982

