The Grothendieck Group of a Finite Group Which is a Split Extension by a Nilpotent Group

Tadashi MITSUDA

Tokyo Metropolitan University
(Communicated by K. Ogiue)

Introduction

Let R be a ring. Then the Grothendieck group $G_0(R)$ is the abelian group given by generators [M] where M is a finitely generated R-module, with relations [M] = [M'] + [M''] whenever $0 \to M' \to M \to M'' \to 0$ is an exact sequence of finitely generated R-modules. Let π be a finite group, and $\mathscr O$ be a maximal order in $Q\pi$ containing $Z\pi$. Then Swan [4] showed that there is a natural epimorphism from $G_0(\mathscr O)$ onto $G_0(Z\pi)$. He also gave an example of cyclic group such that $G_0(Z\pi) \not\cong G_0(\mathscr O)$. In connection with these results of Swan, it is an interesting problem to investigate the relation between $G_0(Z\pi)$ and $G_0(\mathscr O)$. For an abelian group π , Lenstra [1] gives the description of $G_0(Z\pi)$ which answers the above question. Recently, Miyamoto [2] generalizes Lenstra's result into nilpotent groups.

In this paper, we treat a finite group with a normal nilpotent subgroup which has a complement. For such a group π , we obtain an analogous decomposition of $G_0(\mathbf{Z}\pi)$.

Theorem. Let π be a finite group with a normal nilpotent subgroup U which has a complement. Then we have

$$G_{\scriptscriptstyle 0}(oldsymbol{Z}\pi)\!\cong\!\bigoplus_{{oldsymbol{e}}\in Y}G_{\scriptscriptstyle 0}\!\!\left(oldsymbol{Z}\pi e^*\!\!\left[rac{1}{d(e)}
ight]\!
ight)$$
 ,

where Y is a set of the representatives of the π -conjugacy classes of centrally primitive idempotents of QU, e^* denotes the class sum of the class containing e and $d(e) = |U|/|\mathrm{Ker}\,(U \to QUe)|$.

REMARK 1. The idempotent e of the ring R is called centrally primitive, if e is a primitive idempotent of the center of the ring R.

Received April 28, 1983