An Environment of Quasi-Valuation Domains

Michinori YAMASHITA

Sophia University
(Communicated by Y. Kawada)

Introduction

Any domain W has an ordered group G(W). This group, the set of non-zero principal fractional ideals of W with $xW \le yW$ if and only if xW contains yW, is called the group of divisibility of W. Let $K^\times = K\setminus\{0\}$ be the multiplicative group of quotient field of W and U(W) the group of units of W, then G(W) is order isomorphic to $K^\times/U(W)$, where $xU(W) \le yU(W)$ if and only if $y/x \in W$. It is wellknown that G(W) is linearly ordered if and only if W is a valuation domain.

In section 1, to define a good preordered group (2.1), we study an additive abelian group admitting two co-linear preorder relations compatible with the group operation.

In section 2, using the basic results of section 1, we discuss some facts related to a domain W under the assumption that G(W) is a good preordered group. Then W is dominated by a valuation domain V. We call this domain W a quasi-valuation domain; in particular, in case V is integral over W we call W a prevaluation domain. Furthermore, there are many similarities between quasi-valuation domains and valuation domains. In fact $V\setminus U(V)=W\setminus U(W)$. Then it is only natural that a quasi-valuation domain has some normalities. A quasi-valuation domain W is really seminormal, i.e., $Pic(W) \rightarrow Pic(W[X])$ is an isomorphism, where Pic(W) is the Picard group of W and X is an indeterminate. Therefore, for a domain R, it stands to reason that we should think about $\cap W_{\lambda}$, the intersection ranging over all quasivaluation domains containing R. This domain $R^{\sharp} = \cap W_{\lambda}$ is seminormal; R^{\sharp} is not always the seminormalization R^{+} of R, however.

In section 3, we show that R^* is the largest subdomain R' of \tilde{R} containing R such that, for all $p' \in \operatorname{Spec}(R')$, the canonical homomorphism $k(p' \cap R) \to k(p')$ is an isomorphism, where \tilde{R} is the derived normal ring

Received March 15, 1982 Revised April 3, 1984