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Introduction

In the theory of dynamical systems, there remains the open problem,
so called Seifert Conjecture: Has any sufficiently smooth flow on $S^{s}$ a
periodic orbit? This conjecture is based on Seifert’s paper [11] which
proved the following theorem.

THEOREM 1. Let $x=(x_{1}, x_{2}),$ $y=(y_{1}, y_{2})$ be points of $R^{2}$ and consider
the following equation in $R^{4}$

(1) $\dot{x}_{i}=y_{l},\dot{y}_{i}=-x_{i};i=1,2$ .
This system has $S^{8}=\{(x, y)\in R^{4};x_{1}^{2}+ae+y_{1}^{\epsilon}+y_{2}^{l}=1\}$ as an invariant set, $so$

we can consider the flow on $S^{8}$ induced by (1). Then any flow $C^{0}$ near
the above flow on $S^{s}$ has at least one periodic orbit.

The system (1) is the Hamiltonian system with Hamiltonian

$(2\rangle H(x, y)=\frac{1}{2}(y_{1}^{2}+y_{2}^{2})+\frac{1}{2}(x_{1}^{2}+d)$ ,

which describes the harmonic oscilaters.
More strongly, (2) is derived from the Lagrangian system

(3) $\frac{d}{dt}\frac{\partial}{\partial\dot{x}_{i}}(T-U)=\frac{\partial}{\partial x_{i}}(T-U);i=1,2$

where

(4) $T=\frac{1}{2}(\dot{x}_{1}^{2}+\dot{x}_{2}^{2})$ and $U=\frac{1}{2}(x_{1}^{l}+x\mathfrak{J}$ ,

with $y_{i}=(\partial T/\partial\dot{x}_{i})=\dot{x}_{i}(i=1,2)$ .
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