Токуо Ј. Матн. Vol. 8, No. 1, 1985

A Remark on the Duality Mapping on l^{∞}

Marián FABIAN

Prague (Communicated by J. Wada)

Here we answer a question raised in [1]. In order to formulate this question we are to recall some notations and facts from [1]. We work with the dual $l^{\infty*}$ of l^{∞} , which can be written as the direct sum $l^1+c_0^{\perp}$. S denotes the unit sphere in l^{∞} and sm S the set of the smooth points of S. The duality mapping $F_0: S \rightarrow 2^{l^{\infty*}}$ is defined as follows

$$F_0(v) = \{\lambda \in l^{\infty*} : \lambda(u) = 1 = ||\lambda||\}, \quad v \in S.$$

ext $F_0(v)$ denotes the set of extremal points of $F_0(v)$. The mentioned question sounds as:

"Given $v \in S \setminus S$ and $\lambda \in ext F_0(v)$, does there exist a sequence $\{v_n\} \subset S \cap S$ such that $||v_n - v|| \to 0$ and that λ is a w*-cluster point of the sequence $\{F_0(v_n)\}$?"

The answer is negative in general as it follows from Propositions 1 and 2. Owing to some reasons from [1] we may and do restrict ourselves to the situation when $v \ge 0$ and $\lambda \in c_0^{\perp}$.

We recall that (see [1]) there is a one-to-one correspondence between ultrafilters and 0-1-measures, namely, given an ultrafilter \mathscr{U} on the set of natural numbers N we can define the measure on N as

(*)
$$\lambda(A) = \begin{cases} 1 & \text{iff} \quad A \in \mathcal{U} \\ 0 & A \notin \mathcal{U} \end{cases}$$

and conversely. Also, a 0-1-measure λ is in c_0^{\perp} if and only if the corresponding \mathscr{U} is free (non-principal), i.e., \mathscr{U} contains no finite sets. It is known [1] that, for $v \in S$, $v \geq 0$, ext $F_0(v)$ consists only of 0-1-measures.

PROPOSITION 1. Let $v \in S \setminus S$, $v \ge 0$, $\lambda \in ext F_0(v) \cap c_0^{\perp}$ and \mathscr{U} be the ultrafilter associated with λ by (*). Then the following assertions are equivalent:

Receved December 10, 1983