A Complex Continued Fraction Transformation and Its Ergodic Properties

Shigeru TANAKA
Tsuda College

Introduction

In this paper we introduce a continued fraction algorithm T of complex numbers and investigate metrical properties of this algorithm. T is defined on the domain $X=\{z=x \alpha+y \bar{\alpha} ;-(1 / 2) \leqq x, y \leqq(1 / 2)\}(\alpha=1+i)$ by $T z=(1 / z)-[1 / z]_{1}$, where $[z]_{1}$ denotes $[x+(1 / 2)] \alpha+[y+(1 / 2)] \bar{\alpha}$ for a complex number $z=x \alpha+y \bar{\alpha}$. This map T induces a continued fraction expansion of $z \in X$,

$$
z=\frac{1 \mid}{\mid a_{1}}+\frac{1 \mid}{\mid a_{2}}+\frac{1 \mid}{\mid a_{3}}+\cdots
$$

where each a_{i} is of the form $n \alpha+m \bar{\alpha}$ for some integers n and m. We give fundamental definitions and properties of this continued fraction algorithm T in $\S 1$.

To investigate approximation properties of continued fractions, the dual continued fraction

$$
\frac{1 \mid}{\mid a_{n}}+\frac{1}{\left|a_{n-1}\right|}+\cdots+\frac{1 \mid}{\mid a_{2}}+\frac{1 \mid}{\mid a_{1}}
$$

plays an important role. In §2, we define the algorithm S which induces T-dual continued fraction. By using this algorithm S, we show that

$$
\left|z-\frac{p_{n}}{q_{n}}\right| \leqq \frac{\sqrt{2}}{\left|q_{n}\right|}
$$

for each $z \in X$ and $n \geqq 1$, where p_{n} / q_{n} denotes the n-th approximant introduced by T, and we also show that the value $\sqrt{\overline{2}}$ is the best possible constant.

In §3 we construct the natural extension map R of T by combining

[^0]
[^0]: Received September 30, 1983
 Revised May 24, 1984

