Formula for the Casimir Operator in Iwasawa Coördinates

Floyd L. WILLIAMS

University of Massachusetts at Amherst and Sophia University
(Communicated by Y. Kawada)

Introduction

Let G be a connected non-compact semisimple Lie group with an Iwasawa decomposition G=KAN, where the Lie algebra of K is $\mathfrak k$ in the Cartan decomposition $\mathfrak g=\mathfrak k+\mathfrak p$ of the Lie algebra $\mathfrak g$ of G, the Lie algebra $\mathfrak q$ of A is a maximal abelian subspace of $\mathfrak p$, and the Lie algebra $\mathfrak n$ of N is a sum of root spaces corresponding to a choice of positive restricted roots. Let Ω be the Casimir operator of G. We give a formula for Ω in terms of first order differential operators $\delta_{\mathfrak s}$, δ_{H} , $\delta_{\mathfrak s}$ defined for left-invariant vector fields $(\mathfrak s,H,\mathfrak s)\in \mathfrak k\times \mathfrak a\times \mathfrak n$. Theorem 1.10 is the main result. Such a formula was first proposed in [1]. The arguments given there, however, are incomplete. Corrections are made in the present paper. In particular our formula reduces to Takahashi's formula [3] when G=SL(2,R).

§1. Statement of the result.

Let $\mathfrak g$ be a non-compact real semisimple Lie algebra with a Cartan decomposition $\mathfrak g=\mathfrak k+\mathfrak p$, and Cartan involution θ . The Killing form B is negative definite on $\mathfrak k$ and positive definite on $\mathfrak p$. The formula

$$\langle x, y \rangle = -B(x, \theta y) \qquad x, y \in \mathfrak{g}$$

defines a real positive definite inner product \langle , \rangle on g. Let $\alpha \subset \mathfrak{p}$ be a maximal abelian subspace of \mathfrak{p} . For $\alpha \in \mathfrak{a}^*$ (the real dual space of \mathfrak{a}) let $\mathfrak{g}_{\alpha} = \{x \in \mathfrak{g} \mid [H, x] = \alpha(H)x \text{ for every } H \text{ in } \mathfrak{a}\}$. α is a restricted root (relative to \mathfrak{a}) if both α and the root space \mathfrak{g}_{α} are non-zero. Let $\Sigma \subset \mathfrak{a}^*$ denote the set of restricted roots, let $\Sigma^+ \subset \Sigma$ denote a choice of a system of positive restricted roots, let \mathfrak{n} denote the sum of the positive root spaces, and let (for $\alpha \in \Sigma$)