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Introduction

Let $G$ be a connected non-compact semisimple Lie group with an
Iwasawa decomposition $G=KAN$, where the Lie algebra of $K$ is $f$ in the
Cartan decomposition $\mathfrak{g}=f+\mathfrak{p}$ of the Lie algebra $\mathfrak{g}$ of $G$ , the Lie algebra

$\mathfrak{a}$ of $A$ is a maximal abelian subspace of $\mathfrak{p}$ , and the Lie algebra $n$ of $N$ is
a sum of root spaces corresponding to a choice of positive restricted
roots. Let $\Omega$ be the Casimir operator of $G$ . We give a formula for $\Omega$

in terms of first order differential operators $\delta_{x},$ $\delta_{H},$ $\delta_{x}$ defined for left-
invariant vector fields $(z, H, x)\in f\times \mathfrak{a}\times n$ . Theorem 1.10 is the main result.
Such a formula was first proposed in [1]. The arguments given there,
however, are incomplete. Corrections are made in the present paper.
In particular our formula reduces to Takahashi’s formula [3] when $G=$

$SL(2, R)$ .

\S 1. Statement of the result.

Let $\mathfrak{g}$ be a non-compact real semisimple Lie algebra with a Cartan
decomposition $\mathfrak{g}=f+\mathfrak{p}$ , and Cartan involution $\theta$ . The Killing form $B$ is
negative definite on $f$ and positive definite on $\mathfrak{p}$ . The formula

(1.1) $\langle x, y\rangle=-B(x, \theta y)$ $x,$ $ye\mathfrak{g}$

defines a real positive definite inner product $\langle, \rangle$ on $\mathfrak{g}$ . Let $\mathfrak{a}\subset \mathfrak{p}$ be a
maximal abelian subspace of $\mathfrak{p}$ . For $\alpha\in \mathfrak{a}^{*}$ (the real dual space of $\mathfrak{a}$) let
$\mathfrak{g}_{\alpha}=$ {$x\in \mathfrak{g}|[H,$ $x]=\alpha(H)x$ for every $H$ in $\mathfrak{a}$ }. $\alpha$ is a restricted root (re-
lative to a) if both $\alpha$ and the root space $\mathfrak{g}_{\alpha}$ are non-zero. Let $\Sigma\subset \mathfrak{a}^{*}$

denote the set of restricted roots, let $\Sigma^{+}\subset\Sigma$ denote a choice of a system
of positive restricted roots, let $\mathfrak{n}$ denote the sum of the positive root
spaces, and let (for $\alpha\in\Sigma$)
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