Local Topological Properties of Differentiable Mappings II

[Dedicated to Professor Morio Obata on his sixtieth Birthday]
Takuo FUKUDA

Chiba University
(Communicated by K. Kojima)

Introduction

In the preceding paper [2], it was shown that almost every C^{∞} mapgerm: $\left(R^{n}, 0\right) \rightarrow\left(R^{p}, 0\right), n \leqq p$, has rather good topological structures. In particular it was shown that they are topologically equivalent to the cones of topologically stable mappings of S^{n-1} into S^{p-1}, where the cone of a mapping $f: X \rightarrow Y$ is the mapping $C f: X \times[0,1) / X \times\{0\} \rightarrow Y \times[0,1) / Y \times$ $\{0\}$ defined by $C f(x, t)=(f(x), t)$. Here almost every is used in the rather strong sense that the complement of the set of these map-germs should have infinite codimension in the space of all C^{∞} map-germs.

This paper has two purposes. One is to show similar generic properties for the remaining case $n>p$. The other is to show, as an application of these generic properties, that for almost every mapping into the plane $f:\left(R^{n}, 0\right) \rightarrow\left(R^{2}, 0\right)$ a Poincare-Hopf type equality, in some cases the Morse inequalities as well, holds between the Betti numbers of the set $f^{-1}(0) \cap$ S_{ε}^{n-1} and the indices of the singular points of f appearing around the origin, where $S_{\varepsilon}^{n-1}=\left\{x \in R^{n} \mid\|x\|=\varepsilon\right\}$ and ε is supposed to be small. The index of a singular point of a mapping into the plane will be defined later in this section.

Let us explain these properties more precisely. $J^{r}(n, p)$ is the set of the r-jets of all C^{∞} map-germs: $\left(R^{n}, 0\right) \rightarrow\left(R^{p}, 0\right)$. For a positive number $\varepsilon>0$, we set

$$
\begin{aligned}
& D_{\varepsilon}^{m}=\left\{x \in R^{m} \mid\|x\| \leqq \varepsilon\right\} \\
& S_{\varepsilon}^{m-1}=\left\{x \in R^{m} \mid\|x\|=\varepsilon\right\}
\end{aligned}
$$

Theorem 1. For each positive integer r, there exists a closed

