Токуо Ј. Матн. Vol. 8, No. 2, 1985

Homogeneity Theorems on Perfect Codes in Hamming Schemes and Generalized Hamming Schemes

Akihiro MUNEMASA

Sophia University (Communicated by Y. Kawada)

Introduction

Let F be a finite set of q elements, where q > 1, q is not necessarily assumed to be a prime power, and let X be the set of all d-tuples over F. We may assume $F = \{0, 1, \dots, q-1\}$ without loss of generality, and we regard X as an additive group. For $\mathbf{x} = (x_i) \in X$, $\mathbf{y} = (y_i) \in X$, we define the Hamming distance on X by $\partial(x, y) = |\{i \mid x_i \neq y_i\}|$, and distance relations R_i by $R_i = \{(\mathbf{x}, \mathbf{y}) \in X \times X \mid \partial(\mathbf{x}, \mathbf{y}) = i\}$ for $i = 0, 1, \dots, d$. Then $(X, \{R_i\}_{i=0}^d)$ is a symmetric association scheme, which is called a Hamming scheme, and is denoted by H(d, q). A perfect *e*-error-correcting code in X (or a perfect *e*-code in H(d, q)) is a subset C of X such that for every $\mathbf{x} \in X$ there exists exactly one $\mathbf{c} \in C$ satisfying $\partial(\mathbf{x}, \mathbf{c}) \leq e$.

The classification of perfect e-codes in H(d, q) is completed for the case $e \ge 3$ by Tietäväinen, van Lint, Bannai, Reuvers, Best, Hong, and many others (see [4] for details). For the case e=2, the known perfect 2-codes have the following parameters (see [6, chapter V]):

- (1) d=1, 2 (trivial codes)
- (2) d=5, q=2 (binary repetition code)
- (3) d=11, q=3 (ternary Golay code)

and they are unique up to isomorphism. Tietäväinen-van Lint [5, 10] showed that there exists no unknown perfect 2-code in H(d, q), provided q is a prime power. But if q is not a prime power, the (non)existence problem remains open. We know two necessary conditions for the existence of a perfect *e*-code in H(d, q) with q arbitrary.

The first is called the sphere packing condition. Let $S_{\epsilon}(c)$ denote the sphere of radius e with center $c \in X$, i.e., $S_{\epsilon}(c) = \{x \in X | \partial(x, c) \leq e\}$. Then a subset C of X is a perfect e-code in H(d, q) if and only if $\{S_{\epsilon}(c) | c \in C\}$ is a partition of X. Thus the following condition is necessary for the

Received May 23, 1984