Токуо Ј. Матн. Vol. 8, No. 2, 1985

Lipschitz Classes of Periodic Stochastic Processes and Fourier Series

Tatsuo KAWATA

Keio University

Introduction

Let $X(t, \omega)$ be a complex valued stochastic process on a complete probability space $(\Omega, F, P), t \in \mathbb{R}^1, \omega \in \Omega$. Suppose throughout that $X(t, \omega)$ is measurable $L \times F$ on $\mathbb{R}^1 \times \Omega$, L being the class of Lebesgue measurable sets on \mathbb{R}^1 . Assume also that $X(t, \omega)$ is an L^r -process, namely $X(t, \omega) \in$ $L^r(\Omega)$ for each $t \in \mathbb{R}^1, 1 \leq r < \infty$ and that $X(t, \omega)$ is 2π -periodic in the sense that

(0.1)
$$E|X(t+2\pi, \omega)-X(t, \omega)|=0$$
,

for each $t \in \mathbb{R}^1$. For an L^2 -process $X(t, \omega)$, (0.1) is equivalent to $E |X(t+2\pi, \omega) - X(t, \omega)|^2 = 0$ which, as we easily see, is equivalent also to the condition that the covariance function $\rho(u, v)$ of $X(t, \omega)$ is 2π -periodic with respect to each of u and v.

Write

(0.2)
$$\|X(t, \cdot)\|_{r} = \|X(t, \omega)\|_{r} = [E|X(t, \omega)|^{r}]^{1/r} ,$$
$$\|X(\cdot, \cdot)\|_{s,r} = \|X(t, \omega)\|_{s,r} = \left[\frac{1}{2\pi}\int_{-\pi}^{\pi} \left\|X(t, \cdot)\right\|_{r}^{s} dt\right]^{1/s} .$$

The class of $X(t, \omega)$ for which $||X(\cdot, \cdot)||_{s,r} < \infty$ for some $1 \le r < \infty$, $1 \le s \le \infty$ is denoted by $L^{s,r} = L^{s,r}(T \times \Omega)$, $T = [-\pi, \pi]$.

Write, for a positive integer p, the p-th difference of $X(t, \omega)$ with increment h of t, by

and define, for $\delta > 0$,

Received May 24, 1984 Revised November 1, 1984