TOKYO J. MATH. VOL. 9, NO. 1, 1986

Some Skew Product Transformations Associated with Continued Fractions and Their Invariant Measures

Shunji ITO

Tsuda College

Introduction

In this paper we discuss the following number theoretical transformations defined on $[0, 1) \times [0, 1)$

$$T_{1}; \ (\alpha, \beta) \longrightarrow \left(\frac{1}{\alpha} - \left[\frac{1}{\alpha}\right], \frac{\beta}{\alpha} - \left[\frac{\beta}{\alpha}\right]\right)$$

and

$$T_2$$
; $(\alpha, \beta) \longrightarrow \left(\frac{1}{\alpha} - \left[\frac{1}{\alpha}\right], - \left[-\frac{\beta}{\alpha}\right] - \frac{\beta}{\alpha}\right)$.

These transformations T_1 and T_2 which can be found in [1] are examples of the so-called skew product transformations associated with the continued fraction transformation S; $\alpha \rightarrow (1/\alpha) - [1/\alpha]$. These transformations induce the following expansions, respectively (see §1 and §3 for details);

1)
$$\beta = \sum_{k=1}^{\infty} |\theta(k-1)| \cdot b(k)$$

and

2)
$$\beta = \sum_{k=1}^{\infty} \theta(k-1) \cdot b'(k)$$

where $\theta(n) = q_n \alpha - p_n$.

Therefore, the transformations T_1 and T_2 give the algorithms which will yield the approximations of the real number β by means of the set of all translates $\{n\alpha\}$ of an irrational number α .

In this paper we discuss the ergodic properties of the transformations T_1 and T_2 . And we shall elaborate on number theoretical applica-

Revised December 20, 1985

Received November 13, 1984