Some Skew Product Transformations Associated with Continued Fractions and Their Invariant Measures

Shunji ITO

Tsuda College

Introduction

In this paper we discuss the following number theoretical transformations defined on $[0,1) \times[0,1)$

$$
T_{1} ;(\alpha, \beta) \longrightarrow\left(\frac{1}{\alpha}-\left[\frac{1}{\alpha}\right], \frac{\beta}{\alpha}-\left[\frac{\beta}{\alpha}\right]\right)
$$

and

$$
T_{2} ;(\alpha, \beta) \longrightarrow\left(\frac{1}{\alpha}-\left[\frac{1}{\alpha}\right],-\left[-\frac{\beta}{\alpha}\right]-\frac{\beta}{\alpha}\right) .
$$

These transformations T_{1} and T_{2} which can be found in [1] are examples of the so-called skew product transformations associated with the continued fraction transformation $S ; \alpha \rightarrow(1 / \alpha)-[1 / \alpha]$. These transformations induce the following expansions, respectively (see §1 and §3 for details);

1) $\beta=\sum_{k=1}^{\infty}|\theta(k-1)| \cdot b(k)$
and
2) $\beta=\sum_{k=1}^{\infty} \theta(k-1) \cdot b^{\prime}(k)$
where $\theta(n)=q_{n} \alpha-p_{n}$.
Therefore, the transformations T_{1} and T_{2} give the algorithms which will yield the approximations of the real number β by means of the set of all translates $\{n \alpha\}$ of an irrational number α.

In this paper we discuss the ergodic properties of the transformations T_{1} and T_{2}. And we shall elaborate on number theoretical applica-

[^0]
[^0]: Received November 13, 1984
 Revised December 20, 1985

