Токуо Ј. Матн. Vol. 9, No. 1, 1986

On the Quartic Residue Symbol of Totally Positive Quadratic Units

Noburo ISHII

University of Osaka Prefecture (Communicated by Y. Kawada)

Introduction

Let *m* be a square free positive integer and ε_m the fundamental unit of the quadratic field $Q(\sqrt{m})$. If ε_m is totally positive, then we define the biquadratic symbol $(\varepsilon_m/p)_4$ for the rational prime number *p* with the condition,

(*)

$$(-1/p) = (m/p) = (\varepsilon_m/p) = 1$$
.

We refer to [3] for the definitions of the symbols (ε_m/p) and $(\varepsilon_m/p)_4$. Let K (resp. K') be the Galois extension over the rational number field Qgenerated by $\sqrt{-1}$ and $\sqrt[4]{\varepsilon_m}$ (resp. $\sqrt{-1}$ and $\sqrt{\varepsilon_m}$). Then the condition (*) is equivalent to say that p splits completely in K'. Further the symbol $(\varepsilon_m/p)_4$ expresses the decompition law of this prime p between K and K'. Let T_m be the trace of ε_m over Q and denote by f_m (resp. e_m) the square free part of T_m+2 (resp. $m(T_m+2)$). Consider the following three quadratic fields;

(1)
$$F = Q(\sqrt{f_m}), \quad E = Q(\sqrt{-e_m}), \quad k = Q(\sqrt{-m}).$$

Then K contains all these quadratic fields and is abelian over each of them. If the ideal class groups corresponding to K and K' in each field of (1) are determined explicitly, then we obtain three sorts of expressions of $(\varepsilon_m/p)_4$ in view of the representation of a power of p by the norm form of each quadratic field. In the present paper, we offer explicit expressions of this symbol for the integers m of following types:

(2)
$$m = qq': q \equiv 5, 3 \mod 8, q' \equiv 3 \mod 4, (q/q') = -1;$$

 $m = 2q: q \equiv 3 \mod 8;$

$$m = q$$
: $q \equiv 3, 7, 11 \mod 16$. $(q, q': prime numbers.)$

Received October 24, 1984