On the Quartic Residue Symbol of Totally Positive Quadratic Units

Noburo ISHII
University of Osaka Prefecture
(Communicated by Y. Kawada)

Introduction

Let m be a square free positive integer and ε_{m} the fundamental unit of the quadratic field $\boldsymbol{Q}(\sqrt{m})$. If ε_{m} is totally positive, then we define the biquadratic symbol $\left(\varepsilon_{m} / p\right)_{4}$ for the rational prime number p with the condition,
(*)

$$
(-1 / p)=(m / p)=\left(\varepsilon_{m} / p\right)=1
$$

We refer to [3] for the definitions of the symbols $\left(\varepsilon_{m} / p\right)$ and $\left(\varepsilon_{m} / p\right)_{4}$. Let K (resp. K^{\prime}) be the Galois extension over the rational number field \boldsymbol{Q} generated by $\sqrt{-1}$ and $\sqrt[4]{\varepsilon_{m}}$ (resp. $\sqrt{-1}$ and $\sqrt{\varepsilon_{m}}$). Then the condition (*) is equivalent to say that p splits completely in K^{\prime}. Further the symbol $\left(\varepsilon_{m} / p\right)_{4}$ expresses the decompition law of this prime p between K and K^{\prime}. Let T_{m} be the trace of ε_{m} over \boldsymbol{Q} and denote by f_{m} (resp. e_{m}) the square free part of $T_{m}+2$ (resp. $m\left(T_{m}+2\right)$). Consider the following three quadratic fields;

$$
\begin{equation*}
\boldsymbol{F}=\boldsymbol{Q}\left(\sqrt{f_{m}}\right), \quad \boldsymbol{E}=\boldsymbol{Q}\left(\sqrt{-e_{m}}\right), \quad k=\boldsymbol{Q}(\sqrt{-m}) . \tag{1}
\end{equation*}
$$

Then K contains all these quadratic fields and is abelian over each of them. If the ideal class groups corresponding to K and K^{\prime} in each field of (1) are determined explicitly, then we obtain three sorts of expressions of $\left(\varepsilon_{m} / p\right)_{4}$ in view of the representation of a power of p by the norm form of each quadratic field. In the present paper, we offer explicit expressions of this symbol for the integers m of following types:

$$
\begin{align*}
& m=q q^{\prime}: \quad q \equiv 5,3 \bmod 8, \quad q^{\prime} \equiv 3 \bmod 4, \quad\left(q / q^{\prime}\right)=-1 ; \\
& m=2 q: \quad q \equiv 3 \bmod 8 ; \tag{2}\\
& m=q: \quad q \equiv 3,7,11 \bmod 16 . \quad\left(q, q^{\prime}: \text { prime numbers. }\right)
\end{align*}
$$

[^0]
[^0]: Received October 24, 1984

