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Introduction

Submanifolds with parallel second fundamental form (which are simply
called parallel submanifolds) have been studied by many differential
geometers. In particular, parallel Kaehler submanifolds in a complex
projective space are completely determined (see [1]).

In this paper, we give some characterizations of Einstein parallel
Kaehler submanifolds in a complex projective space.

Let $X:M\rightarrow E^{N}$ be an isometric immersion of an n-dimensional compact
Riemannian manifold into an N-dimensional Euclidean space. We denote
by $\Delta$ and $Spec(M)=\{0<\lambda_{1}<\lambda_{2}<\cdots\}$ , the Laplacian acting on differentiable
functions of $M$ and the spectrum of $\Delta$ , respectively. Then, $X$ can be
decomposed as $X=X_{0}+\sum_{keN}X_{k}$ , where $X_{k}$ is a k-th eigenfunction of $\Delta$

of $M,$ $X_{0}$ is a constant mapping, and the addition is convergent com-
ponentwise for the $L^{2}$-topology on $C^{\infty}(M)$ . We say that the immersion
is of order $\{l\}$ (or mono-order) if $X=X_{0}+X_{\iota},$ $l\in N,$ $X_{l}\neq 0$ , and of order
$\{k, l\}$ (or bi-order) if $X=X_{0}+X_{k}+X_{l},$ $k,$ $l\in N,$ $l>k,$ $X_{k},$ $X_{l}\neq 0,$ $\cdots$ (see [4]).

Let $F:CP^{m}\rightarrow E^{N}$ be the first standard imbedding of an m-dimensional
complex projective space of constant holomorphic sectional curvature 1
into an N-dimensional Euclidean space, and $i:M^{n}\rightarrow CP^{M}$ be a Kaehler
immersion of an n-dimensional compact Kaehler manifold. We consider
$\phi=F\circ i:M^{n}\rightarrow E^{N}$ . Then, $\phi$ is mono-order if and only if $M$ is totally geodesic
(See [3].), and totally geodesic Kaehler submanifolds are of order 1. Let
$A$ be the shape operator of the immersion $i$ , and define the tensor $T$ by

$T(\xi, \eta)=trA_{\xi}A_{\eta}$ for $\xi,$ $\eta\in NM$ ,

where $NM$ is the normal bundle of $M$. Then $T$ is a symmetric bilinear
mapping from $NM\times NM$ into $R$ . A. Ros [3] has proved that $M$ is bi-order
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