A Note on the Transcendental Continued Fractions

Takeshi OKANO
The Saitama Institute of Technology
(Communicated by K. Katase)

Introduction

Let $a_{1}, a_{2}, a_{3}, \cdots ; b_{1}, b_{2}, b_{3}, \cdots$ be all integers and $a_{1} \geqq 0, a_{2}>0, a_{3}>0, \cdots$; $b_{1} \geqq 0, b_{2}>0, b_{3}>0, \cdots$ all along this note.

In [2], G. Nettler proved the following theorem.
Nettler's Theorem. For

$$
A=a_{1}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+\ldots \quad \text { and } \quad B=b_{1}+\frac{1}{b_{2}}+\frac{1}{b_{3}}+\ldots,
$$

if $a_{n}>b_{n}>\alpha_{n-1}^{(n-1)^{2}}$ for all n sufficiently large, then $A, B, A \pm B, A / B$ and $A B$ are all transcendental numbers.

The aim of this note is to prove the following theorem that is an improvement of Nettler's Theorem.

Theorem. For

$$
A=a_{1}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+\ldots \quad \text { and } \quad B=b_{1}+\frac{1}{b_{2}}+\frac{1}{b_{3}}+\ldots,
$$

if $a_{n}>b_{n}>a_{n-1}^{\gamma(n-1)}$ for all n sufficiently large, then, $A, B, A \pm B, A / B$ and $A B$ are all transcendental numbers, where γ is any constant such that $\gamma>16$.

We give an elementary proof of this theorem using the method of G. Nettler.

§ 1. Lemmas.

Lemma 1. If

