A Note on the Transcendental Continued Fractions

Takeshi OKANO

The Saitama Institute of Technology (Communicated by K. Katase)

Introduction

Let a_1 , a_2 , a_3 , \cdots ; b_1 , b_2 , b_3 , \cdots be all integers and $a_1 \ge 0$, $a_2 > 0$, $a_3 > 0$, \cdots ; $b_1 \ge 0$, $b_2 > 0$, $b_3 > 0$, \cdots all along this note.

In [2], G. Nettler proved the following theorem.

NETTLER'S THEOREM. For

$$A = a_1 + \frac{1}{a_2} + \frac{1}{a_3} + \cdots$$
 and $B = b_1 + \frac{1}{b_2} + \frac{1}{b_3} + \cdots$,

if $a_n > b_n > a_{n-1}^{(n-1)^2}$ for all n sufficiently large, then A, B, $A \pm B$, A/B and AB are all transcendental numbers.

The aim of this note is to prove the following theorem that is an improvement of Nettler's Theorem.

THEOREM. For

$$A = a_1 + \frac{1}{a_2} + \frac{1}{a_3} + \cdots$$
 and $B = b_1 + \frac{1}{b_2} + \frac{1}{b_3} + \cdots$,

if $a_n > b_n > a_{n-1}^{\gamma(n-1)}$ for all n sufficiently large, then, A, B, $A \pm B$, A/B and AB are all transcendental numbers, where γ is any constant such that $\gamma > 16$.

We give an elementary proof of this theorem using the method of G. Nettler.

§1. Lemmas.

LEMMA 1. If

Received February 26, 1986