A Note on Test Sufficiency in Weakly Dominated Statistical Experiments

Tokitake KUSAMA and Junji FUJII

Waseda University and Osaka City University

Introduction

Let $\mathscr{E}=(X,\underline{A},P)$ be a statistical experiment or simply an experiment, i.e., X be a set, \underline{A} a σ -field of subsets of X and P a family of probability measures on \underline{A} . A set N is called P-null if p(N)=0 for all $p\in P$, and written $N=\varnothing[P]$. For A and B in \underline{A} , we write $A\subset B[P]$ if $A-B=\varnothing[P]$. A subfield \underline{B} of \underline{A} is called test sufficient if for any \underline{A} -measurable test function f, i.e., $0\leq f\leq 1$, there exists a \underline{B} -measurable test function g such that $\int f dp = \int g dp$ for all $p\in P$.

An experiment $\mathscr E$ is called weakly dominated if there exists a measure λ on $\underline A$ such that (a) for each p in P, there exists a density $dp/d\lambda$ and $P\equiv\lambda$, i.e., all the λ -null sets are P-null and vice versa, and (b) for every family $\{A_r; \gamma\in\Gamma\}$ consisting of subsets which are σ -finite with respect to λ , there exists a set U called essential supremum, which satisfies (b-1) $U\in\underline A$, (b-2) $A_r\subset U[\lambda]$ for all $\gamma\in\Gamma$ and (b-3) if $A\in\underline A$ and $A_r\subset A[\lambda]$ for all $\gamma\in\Gamma$, then $U\subset A[\lambda]$.

An experiment $\mathscr E$ is called majorized if for each $p \in P$, there exists a set $S(p) \in \underline{A}$ called an $\mathscr E$ -support of p, which satisfies S-1. p(S(p)) = 1, and

S-2. $P \ll p$ on S(p), i.e., if $N \in \underline{A}$, $N \subset S(p)$ and p(N) = 0, then $N = \emptyset$ [P].

A weakly dominated experiment $\mathscr E$ is majorized since for each $p \in P$, $\{x \in X; (dp/d\lambda)(x) > 0\}$ is an $\mathscr E$ -support of p.

In a majorized experiment there exists a subclass \underline{F} of \underline{A} called a maximal decomposition, which satisfies

- D-1. for each $F \in \underline{F}$, there exists $p \in P$ such that p(F) > 0 and $F \subset S(p)[P]$,
- D-2. for any distinct sets F and G in F, $F \cap G = \emptyset$ P,
- D-3. each $p \in P$ is concentrated on a countable number of sets in F and D-4. if $A \in \underline{A}$ and $A \cap F = \emptyset[P]$ for all $F \in \underline{F}$, then $A = \emptyset[P]$.