A Uniqueness Set for the Differential Operator $\Delta_{z}+\lambda^{2}$

Ryoko WADA and Mitsuo MORIMOTO
Sophia University

Introduction

We consider the Laplacian

$$
\Delta_{a}=\left(\partial / \partial z_{1}\right)^{2}+\left(\partial / \partial z_{2}\right)^{2}+\cdots+\left(\partial / \partial z_{d+1}\right)^{2}
$$

in the complex $d+1$ space C^{d+1}. Let

$$
M=\left\{z=\left(z_{1}, z_{2}, \cdots, z_{d+1}\right) \in C^{d+1} ; z \neq 0, z^{2}=0\right\}
$$

be the complex cone defined by the quadratic equation

$$
z^{2}=z_{1}^{2}+z_{2}^{2}+\cdots+z_{d+1}^{2}=0
$$

Suppose λ is an arbitrary complex number. The first named author showed in [13] that the entire function f on C^{d+1} satisfying the differential equation

$$
\begin{equation*}
\left(\Delta_{z}+\lambda^{2}\right) f=0 \tag{0.1}
\end{equation*}
$$

is completely defined by its restriction values on the complex subvariety M. In this sense, we call the cone M a uniqueness set for the differential operator $\Delta_{z}+\lambda^{2}$.

We shall show in this paper that this phenomenon occurs locally at the origin. More precisely, we shall prove a semi-local version using the Lie ball.

Let $\widetilde{B}(r)$ be the Lie ball of radius r with center at the origin in C^{d+1} (see definition in §1). The space of holomorphic functions on $\widetilde{B}(r)$ is denoted by $\mathcal{O}(\widetilde{B}(r))$. We shall denote by $\mathcal{O}_{\lambda}(\widetilde{B}(r))$ the subspace of $\mathcal{O}(\widetilde{B}(r))$ defined by the differential equation (0.1). Remark that $\mathcal{O}_{0}(\widetilde{B}(r))=$ $\mathcal{O}_{\Delta}(\widetilde{B}(r))$ in our notation in our previous paper [8], [10], etc., and that $\mathcal{O}_{0}(\widetilde{B}(r))$ is the space of harmonic functions on the Lie ball $\widetilde{B}(r)$.

Let us consider the space of functions on $M \cap \widetilde{B}(r)$:

[^0]
[^0]: Received May 6, 1986

