On the Asymptotic Behaviors of the Spectrum of Quasi-Elliptic Pseudodifferential Operators on $\boldsymbol{R}^{\boldsymbol{n}}$

Junichi ARAMAKI
Tokyo Denki University
(Communicated by Y. Kawada)

Introduction

We consider the asymptotic behaviors of the spectrum of pseudodifferential operators on \boldsymbol{R}^{n} containing the Schrödinger operator:

$$
\begin{equation*}
P(x, D)=-\Delta+V(x) \quad \text { where } \quad \Delta=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}} . \tag{0.1}
\end{equation*}
$$

If the potential $V(x)$ is a positive C^{∞}-function satisfying $\lim _{|x| \rightarrow \infty} V(x)=\infty$, then $P(x, D)$ is essentially self-adjoint in $L^{2}\left(\boldsymbol{R}^{n}\right)$ and its unique self-adjoint extension P is positively definite and has a compact resolvent in $L^{2}\left(\boldsymbol{R}^{n}\right)$. Therefore the spectrum of P consists only of eigenvalues of finite multiplicity: $\lambda_{1} \leqq \lambda_{2} \leqq \cdots, \lim _{k \rightarrow \infty} \lambda_{k}=+\infty$ with repetition according to multiplicity. Let $N_{P}(\lambda)$ be the counting function of eigenvalues: $N_{P}(\lambda)=$ $\operatorname{card}\left\{j ; \lambda_{j} \leqq \lambda\right\}$.

In the particular case where $P(x, D)$ is the harmonic oscillator:

$$
P(x, D)=-\Delta+V(x) \quad \text { where } \quad V(x)=|x|^{2}
$$

the asymptotic behavior of $N_{P}(\lambda)$ is well known (cf. Helffer and Robert [4]). Moreover Helffer and Robert [6] have obtained the asymptotic formula of $N_{P}(\lambda)$ for a class of quasi-elliptic pseudodifferential operators containing the anharmonic oscillator:

$$
P(x, D)=-\Delta+V(x) \quad \text { where } \quad V(x)=a|x|^{2 k} \quad(a \text { real }>0, k \text { integer } \geqq 2) .
$$

They have found not only the first term but also the following several terms of $N_{P}(\lambda)$.

In this paper, we shall extend the result of [6] on $N_{P}(\lambda)$ for a class of quasi-elliptic pseudodifferential operators containing, in particular, the one on R^{2} :

