Токуо Ј. Матн. Vol. 10, No. 2, 1987

On the Asymptotic Behaviors of the Spectrum of Quasi-Elliptic Pseudodifferential Operators on R^n

Junichi ARAMAKI

Tokyo Denki University (Communicated by Y. Kawada)

Introduction

We consider the asymptotic behaviors of the spectrum of pseudodifferential operators on \mathbf{R}^n containing the Schrödinger operator:

(0.1)
$$P(x, D) = -\Delta + V(x) \quad \text{where} \quad \Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}.$$

If the potential V(x) is a positive C^{∞} -function satisfying $\lim_{|x|\to\infty} V(x) = \infty$, then P(x, D) is essentially self-adjoint in $L^2(\mathbb{R}^n)$ and its unique self-adjoint extension P is positively definite and has a compact resolvent in $L^2(\mathbb{R}^n)$. Therefore the spectrum of P consists only of eigenvalues of finite multiplicity: $\lambda_1 \leq \lambda_2 \leq \cdots$, $\lim_{k\to\infty} \lambda_k = +\infty$ with repetition according to multiplicity. Let $N_P(\lambda)$ be the counting function of eigenvalues: $N_P(\lambda) =$ $\operatorname{card}\{j; \lambda_j \leq \lambda\}$.

In the particular case where P(x, D) is the harmonic oscillator:

 $P(x, D) = -\Delta + V(x)$ where $V(x) = |x|^2$,

the asymptotic behavior of $N_P(\lambda)$ is well known (cf. Helffer and Robert [4]). Moreover Helffer and Robert [6] have obtained the asymptotic formula of $N_P(\lambda)$ for a class of quasi-elliptic pseudodifferential operators containing the anharmonic oscillator:

$$P(x, D) = -\Delta + V(x)$$
 where $V(x) = a |x|^{2k}$ (a real >0, k integer ≥ 2).

They have found not only the first term but also the following several terms of $N_{P}(\lambda)$.

In this paper, we shall extend the result of [6] on $N_P(\lambda)$ for a class of quasi-elliptic pseudodifferential operators containing, in particular, the one on \mathbb{R}^2 :

Received January 26, 1987