On the Propagation of Chaos for Diffusion Processes with Drift Coefficients Not of Average Form

Masao NAGASAWA and Hiroshi TANAKA
University of Zurich and Keio University

Introduction

Let $b^{(n)}[x, u]$ be \boldsymbol{R}^{d}-valued measurable functions defined on $\boldsymbol{R}^{d} \times \mathscr{P}\left(\boldsymbol{R}^{d}\right)$, where $\mathscr{P}\left(\boldsymbol{R}^{d}\right)$ denotes the space of probability distributions on \boldsymbol{R}^{d}. We consider interacting diffusion processes on \boldsymbol{R}^{d} described by a system of stochastic differential equations

$$
\begin{equation*}
X_{i}^{(n)}(t)=X_{i}^{(n)}(0)+B_{i}(t)+\int_{0}^{t} b^{(n)}\left[X_{i}^{(n)}(s), U^{(n)}(s)\right] d s, \quad i=1,2, \cdots, n \tag{1}
\end{equation*}
$$

where $U^{(n)}(t)=(1 / n) \sum_{t=1}^{n} \delta_{X_{i}^{(n)}(t)}$ is the empirical distribution of $\left(X_{i}^{(n)}(t), \cdots\right.$, $\left.X_{n}^{(n)}(t)\right)$ and $B_{i}(t), i=1,2, \cdots, n$, are mutually independent d-dimensional Brownian motions. The initial value ($X_{1}^{(n)}(0), \cdots, X_{n}^{(n)}(0)$) is always assumed to be independent of the Brownian motions.

Assuming that the law of large numbers $U^{(n)}(t) \rightarrow u(t)$ and $b^{(n)}\left[X_{1}^{(n)}(t)\right.$, $\left.U^{(n)}(t)\right] \rightarrow b[X(t), u(t)]$ hold as $n \rightarrow \infty$ and taking the limit formally in (1) for $i=1$, we get the McKean-Vlasov's SDE

$$
\begin{equation*}
X(t)=X(0)+B(t)+\int_{0}^{t} b[X(s), u(s)] d s \tag{2}
\end{equation*}
$$

where $u(t)$ is the probability distribution of $X(t)$.
The propagation of chaos for the diffusion processes $\left(X_{1}^{(n)}(t), \cdots, X_{n}^{(n)}(t)\right)$ given by (1) states as follows: If the sequence of the initial distributions in (1) is a symmetric u-chaotic family (see $\S 2$), then the sequence of the distributions of ($X_{1}^{(n)}(t), \cdots, X_{n}^{(n)}(t)$) is also a symmetric $u(t)$-chaotic family, where $u(t)$ is the probability distribution of $X(t)$ in (2) with a u-distributed initial value $X(0)$.

When the drift coefficient $b[x, u]=b^{(n)}[x, u], n \geqq 1$, is of average (or integral) form defined by

$$
\begin{equation*}
b[x, u]=\int b(x, y) u(d y) \tag{3}
\end{equation*}
$$

