Токуо Ј. Матн. Vol. 10, No. 2, 1987

The Universality of the Spaces of Ultradistributions $\mathscr{C}_{s}(T)^{2}$, $\mathscr{C}_{(s)}(T)^{2}$, $(0 < s \le \infty)$, $\mathscr{C}_{0}(T)^{2}$ and $\operatorname{Exp}(C^{\times})^{2}$

Yoshiko TAGUCHI

Science University of Tokyo (Communicated by Y. Kawada)

Introduction

L. Waelbroeck [11] proved the universality of the space $\mathscr{C}(V)^{\sim}$ of Schwartz-distributions with compact support on a C^{∞} -manifold V with the δ -function mapping $\delta: V \to \mathscr{C}(V)^{\sim}$, i.e., any vector valued C^{∞} -mapping $f: V \to E$ factors through $\delta: V \to \mathscr{C}(V)^{\sim}$ by a uniquely determined linear morphism $f^{\sim}: \mathscr{C}(V)^{\sim} \to E$ as $f = f^{\sim} \circ \delta$. For the unit circle T, we proved in a previous paper [9] that any vector valued C^{ω} -mapping $f: T \to E$ factors through $\delta: T \to \mathscr{M}(T)$ where $\mathscr{M}(T)$ is the space of Sato-hyperfunctions on T. In the case of Schwartz-distributions, Waelbroeck used a notion of b-spaces, and for Sato-hyperfunctions we used a notion of *ib*-spaces (intersections of b-spaces).

In this paper we prove the universality for the spaces of ultradistributions of various kinds on the unit circle T. We represent these spaces as linear subspaces of C^z (called here sequence spaces) using Fourier coefficients. For a sequence space $E \subset C^z$, Köthe [4] defined the dual (called α -dual by him) by

$$E^{\wedge} = \{ v \in C^{\mathbf{z}} \mid ext{for all } u \in E, \ \sum_{j} |u_{j}| \, |v_{j}| < + \infty \}$$
 .

We consider functionals only of sequential type, i.e., $v: E \to C$ is represented as $v(u) = \langle u, v \rangle = \sum_{j} u_{j}v_{j}$ with $v \in E^{\uparrow}$. A sequence space E is perfect if $E = E^{\uparrow\uparrow}$. A linear mapping $f: E \to F$ between two sequence spaces is called sequential if for every $v \in F^{\uparrow}$, the composed mapping $v \circ f \in E^{\uparrow}$. If E and F are perfect, $f: E \to F$ is sequential if and only if f is represented by an infinite matrix $(f_{ij}) \in C^{Z \times Z}$ such that

$$\sum_{j} |f_{kj}| |u_j| < +\infty$$
 and $\sum_{k} |v_k| |\sum_{j} f_{kj} u_j| < +\infty$

Received July 2, 1986 Revised March 12, 1987