TOKYO J. MATH. Vol. 10, No. 2, 1987

On a *p*-Adic Interpolation of the Generalized Euler Numbers and Its Applications

Hirofumi TSUMURA

Tokyo Metropolitan University (Communicated by K. Ogiue)

Introduction

The Euler numbers E_n are defined by

$$\frac{2}{e^t+1}=\sum_{n=0}^{\infty}E_n\frac{t^n}{n!}.$$

They are classical and important in number theory. Frobenius ([4]) extended E_n to the Euler numbers $H^n(u)$ belonging to an algebraic number u (see also §1), and many authors (e.g. [2], [4] and [8]) investigated their properties. Recently Shiratani-Yamamoto ([10]) constructed a *p*-adic interpolation $G_p(s, u)$ of the Euler numbers $H^n(u)$, and as its application, they obtained an explicit formula for $L'_p(0, \chi)$ with any Dirichlet character χ , including Ferrero-Greenberg's formula ([5]), and gave an explanation of Diamond's formula ([3]).

In the present paper, we shall define the generalized Euler numbers $H_{\chi}^{n}(u)$ for any Dirichlet character χ , which are analogous to the generalized Bernoulli numbers (see §1), and we shall construct their *p*-adic interpolation (see §2), which is an extension of Shiratani-Yamamoto's *p*-adic interpolation $G_{p}(s, u)$ of $H^{n}(u)$. The function $G_{p}(s, u)$ interpolates the *n*-th Euler number for $n \geq 0$ with (p-1)|n, but our function interpolates the *n*-th generalized Euler number for any *n*. As applications, we shall obtain some congruences for the generalized Euler numbers (see §3), which improve the congruences for the Euler numbers in [2], [4] and [8]. In the last section, we shall define an element of a group ring. By using it, we shall reconstruct a *p*-adic interpolation of the Euler numbers in the Iwasawa method which makes use of the formal power series (cf. [12], §7.2).

The author wishes to express his sincere gratitude to Professor H. Miki who suggested him to study the application of p-adic Γ -transforms Received September 18, 1986