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Introduction

Let $M$ be a positive square-free integer and $Q(\sqrt{M})$ be a reaI
quadratic field with discriminant $D$ . Denote by $h(M)$ and $\epsilon_{H}$ the class
number and the fundamental unit of $Q(\sqrt{M})$ respectively. After the
works of Ankeny-Chowla-Hasse [1] and Hasse [5], there appeared several
results about the lower bound of $h(M)$ with some conditions when $\epsilon_{M}=$

$(t+u\sqrt{D})/2$ is small (see Lang [6], Takeuchi [7] and Yokoi [9], [10], [11]).
They used the basic result that the Diophantine equation $x^{2}-Dy^{2}=\pm 4m$ has
no solutions in Zfor $m<(t-2)/u^{2}$ if $N\epsilon_{H}=1$ , and for $m<t/u^{2}$ if $N\epsilon_{K}=-1$ .
As a special case, we have $h(M)>(\log(D-1)/\log 4)-1$ for $M=(4C)^{2}+1$

$(C>1)$ from it. In this note, we also consider the same problem using
continued fractions. We will get $h(M)>(\log D/\log 4)-1$ for $M=(C+$
$\mu(C^{t}-x))^{2}+4xC^{t}$ with $s>t\geqq 1,$ $\lambda,$ $\mu=\pm 1$ if $C$ is even and is not a power
of 2. For these types of $M$ with $t=1$ , Bernstein [3], [4] gave the con-
tinued fractional expansion (c.f. $e.$ ) of $\sqrt{M}$ and the explicit representation
of $\epsilon_{M}$ . The special case of them was mentioned in Yamamoto [8]. We also
give $\epsilon_{M}$ explicitly for the above types of $M$ and the lower bound of $\epsilon_{M}$ for
another types of $M$ from the c.f. $e$ . of $\omega_{0}=(M_{0}+\sqrt{M})/2(M_{0}<\sqrt{M}<M_{0}+2$ ,
$M_{0}\equiv 1(mod 2))$ . The lower bounds of $\epsilon_{M}$ were also given in [8] for suf-
ficiently large $M$ with several conditions. Then we investigate $h(M)$ for
the above types of $M$ and give the lower bounds with some conditions
as mentioned above as a special case.

\S 1. Preliminaries.

In this section, we describe some basic properties of quadratic irra-
tionals and ideals in real quadratic fields, which we will need in later
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