On the Fundamental Units and the Class Numbers of Real Quadratic Fields II

Takashi AZUHATA
Science University of Tokyo
(Communicated by Y. Kawada)

Introduction

Let M be a positive square-free integer and $\boldsymbol{Q}(\sqrt{\bar{M}})$ be a real quadratic field with discriminant D. Denote by $h(M)$ and ε_{M} the class number and the fundamental unit of $\boldsymbol{Q}(\sqrt{\bar{M}})$ respectively. After the works of Ankeny-Chowla-Hasse [1] and Hasse [5], there appeared several results about the lower bound of $h(M)$ with some conditions when $\varepsilon_{M}=$ $(t+u \sqrt{D}) / 2$ is small (see Lang [6], Takeuchi [7] and Yokoi [9], [10], [11]). They used the basic result that the Diophantine equation $x^{2}-D y^{2}= \pm 4 m$ has no solutions in Z for $m<(t-2) / u^{2}$ if $N \varepsilon_{M}=1$, and for $m<t / u^{2}$ if $N \varepsilon_{M}=-1$. As a special case, we have $h(M)>(\log (D-1) / \log 4)-1$ for $M=(4 C)^{2}+1$ $(C>1)$ from it. In this note, we also consider the same problem using continued fractions. We will get $h(M)>(\log D / \log 4)-1$ for $M=\left(C^{s}+\right.$ $\left.\mu\left(C^{t}-\lambda\right)\right)^{2}+4 \lambda C^{t}$ with $s>t \geqq 1, \lambda, \mu= \pm 1$ if C is even and is not a power of 2. For these types of M with $t=1$, Bernstein [3], [4] gave the continued fractional expansion (c.f.e.) of \sqrt{M} and the explicit representation of ε_{M}. The special case of them was mentioned in Yamamoto [8]. We also give ε_{M} explicitly for the above types of M and the lower bound of ε_{M} for another types of M from the c.f.e. of $\omega_{0}=\left(M_{0}+\sqrt{M}\right) / 2\left(M_{0}<\sqrt{M}<M_{0}+2\right.$, $M_{0} \equiv 1(\bmod 2)$). The lower bounds of ε_{M} were also given in [8] for sufficiently large M with several conditions. Then we investigate $h(M)$ for the above types of M and give the lower bounds with some conditions as mentioned above as a special case.

§ 1. Preliminaries.

In this section, we describe some basic properties of quadratic irrationals and ideals in real quadratic fields, which we will need in later

