Токуо Ј. Матн. Vol. 10, No. 2, 1987

On the Fundamental Units and the Class Numbers of Real Quadratic Fields II

Takashi AZUHATA

Science University of Tokyo (Communicated by Y. Kawada)

Introduction

Let M be a positive square-free integer and $Q(\sqrt{M})$ be a real quadratic field with discriminant D. Denote by h(M) and ε_M the class number and the fundamental unit of $Q(\sqrt{M})$ respectively. After the works of Ankeny-Chowla-Hasse [1] and Hasse [5], there appeared several results about the lower bound of h(M) with some conditions when $\varepsilon_{M} =$ $(t+u\sqrt{D})/2$ is small (see Lang [6], Takeuchi [7] and Yokoi [9], [10], [11]). They used the basic result that the Diophantine equation $x^2 - Dy^2 = \pm 4m$ has no solutions in Z for $m < (t-2)/u^2$ if $N \varepsilon_{\scriptscriptstyle M} = 1$, and for $m < t/u^2$ if $N \varepsilon_{\scriptscriptstyle M} = -1$. As a special case, we have $h(M) > (\log(D-1)/\log 4) - 1$ for $M = (4C)^2 + 1$ (C>1) from it. In this note, we also consider the same problem using continued fractions. We will get $h(M) > (\log D/\log 4) - 1$ for $M = (C^{*} + M)$ $\mu(C^t-\lambda))^2+4\lambda C^t$ with $s>t\ge 1$, λ , $\mu=\pm 1$ if C is even and is not a power of 2. For these types of M with t=1, Bernstein [3], [4] gave the continued fractional expansion (c.f.e.) of \sqrt{M} and the explicit representation of ε_{M} . The special case of them was mentioned in Yamamoto [8]. We also give $\varepsilon_{\scriptscriptstyle M}$ explicitly for the above types of M and the lower bound of $\varepsilon_{\scriptscriptstyle M}$ for another types of M from the c.f.e. of $\omega_0 = (M_0 + \sqrt{M})/2 \ (M_0 < \sqrt{M} < M_0 + 2)$ $M_0 \equiv 1 \pmod{2}$. The lower bounds of ε_M were also given in [8] for sufficiently large M with several conditions. Then we investigate h(M) for the above types of M and give the lower bounds with some conditions as mentioned above as a special case.

§1. Preliminaries.

In this section, we describe some basic properties of quadratic irrationals and ideals in real quadratic fields, which we will need in later

Received July 30, 1985 Revised October 13, 1986