Токуо Ј. Матн. Vol. 11, No. 1, 1988

Flow-Spines and Seifert Fibred Structure of 3-Manifolds

Ippei ISHII

Keio University

The concept of a flow-spine of a closed 3-manifold M was introduced in [5]. In this paper, we shall give a sufficient condition for M represented by a flow-spine to be Seifert fibred (Theorem 1 in §2). In §3 the orbit manifold and exceptional fibres are completely determined by a DS-diagram which is induced by a flow-spine. We give an example in §4. And in §5, we study Seifert fibred submanifolds and embedded tori determined by a DS-diagram.

§1. A flow-spine and a DS-diagram with E-cycle.

A normal pair (ψ_t, Σ) on a closed 3-manifold M is a pair of a nonsingular flow ψ_t on M and its compact local section Σ satisfying that

(i) Σ is homeomorphic to a compact 2-disk,

(ii) $T_{-}(x) = \sup\{t < 0 | \psi_{t}(x) \in \Sigma\}$ and $T_{+}(x) = \inf\{t > 0 | \psi_{t}(x) \in \Sigma\}$ are both finite for any $x \in M$, and

(iii) $\partial \Sigma$ is ψ_i -transversal at $(x, T_+(x)) \in \partial \Sigma \times R$ for any $x \in \partial \Sigma$, (for the precise definition, see [5]). Flow-spines $P_{\pm} = P_{\pm}(\psi_i, \Sigma)$ are defined by

$$P_{-} = \Sigma \cup \{ \psi_t(x) \mid x \in \partial \Sigma, \ T_{-}(x) \leq \psi_t(x) \leq 0 \},$$

$$P_{+} = \Sigma \cup \{ \psi_t(x) \mid x \in \partial \Sigma, \ 0 \leq \psi_t(x) \leq T_{+}(x) \},$$

each of which forms a standard spine of M. It was shown in [5] that any closed 3-manifold admits a normal pair on it.

On the other hand, the notion of a closed fake surface and a DSdiagram was introduced in [2] and [3]. For a closed fake surface P, we denote by $\mathfrak{S}_j(P)$ (j=1, 2, 3) the set of the j-th singularities of P (see [2] for the definition). Let P be a closed fake surface which admits a local homeomorphism $f: S^2 \to P$ (S^2 is the 2-sphere) such that $\#f^{-1}(x)=j+1$ for $x \in \mathfrak{S}_j(P)$ (j=1, 2, 3). Such an f is called an *identification map*. Then $G = f^{-1}(\mathfrak{S}_2(P))$ is a 3-regular graph on S^2 . We call (S^2, P, G, f) a DS-

Received April 8, 1987