The Diophantine Equation $x^{2} \pm l y^{2}=z^{l}$ Connected with Fermat's Last Theorem

Norio ADACHI
Waseda University
Dedicated to late Professor M. Kinoshita

Introduction.

Let l be an odd prime number and put $l^{*}=(-1)^{(l-1) / 2} l$. Fermat's Last Theorem was proved by Euler for the exponent $l=3$ ([3]) and by Dirichlet for the exponent $l=5$ ([1]). Their proofs, which will be reproduced in §2 in modern terms (cf. Edwards [2]), are based on the fact that the implication

$$
a^{2}-l^{*} b^{2}=l \text {-th power } \Rightarrow \exists u, v ; a+b \sqrt{l^{*}}=\left(u+v \sqrt{l^{*}}\right)^{l}
$$

is justified for $l=3$ or $l=5$ under some subsidiary conditions. It is often said that their success is due to the unique factorization property in the maximal order of the quadratic field $\boldsymbol{Q}\left(\sqrt{l^{*}}\right)$ for $l=3$ or $l=5$, respectively. But, this point of view is not exact, as will be seen in $\S 1$; for the above implication is true virtually for any prime l (Theorem 1, Theorem 2). The examples in $\S 2$ will show that the difficulty lies in finding the step of "infinite descent", not in the failure of the unique factorization.
§1. The Diophantine equation $x^{2}-l^{*} y^{2}=\boldsymbol{z}^{l}$.
Let l be an odd prime number fixed throughout the present paper and put $l^{*}=(-1)^{(l-1) / 2} l$. We use roman small letters such as a, b, u, v, \cdots to designate rational integers. We say that a and b have the property (P), if they are relatively prime, of opposite parity, and $a^{2}-l^{*} b^{2}$ is an l-th power of a rational integer.

We consider here whether the following implication (*) is justified:
$(\mathrm{P}) \quad \Rightarrow \quad \exists u, v ; a+b \sqrt{l^{*}}=\left(u+v \sqrt{l^{*}}\right)^{l}$

