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In this paper we treat the special value of the Riemann $\theta$ function
with characteristic ${}^{t}[a, b](a, b\in Q)$ :

$\theta\left\{\begin{array}{l}a\\b\end{array}\right\}(z, \tau)=\sum_{neZ}\exp\{\pi i(n+a)^{2}\tau+2\pi i(n+a)(z+b)\}$ ,

where $z,$ $\tau\in C$ and ${\rm Im}\tau>0$ . We show the following proposition:

PROPOSITION RA. Suppose $\tau$ is an imaginary quadratic number with
${\rm Im}\tau>0$ , then

$\theta\left\{\begin{array}{l}a\\b\end{array}\right\}(0, m\tau)/\theta\left\{\begin{array}{l}a’\\b’\end{array}\right\}(0, \tau)$

is an algebraic number for any $a,$ $b,$ $a’,$ $b$
’ of $Q$ and any positive integer

$m$ , provided the denominator does not vanish.

This result plays a role of key stone in the forthcoming work con-
cerning the modular form relative to the Picard modular group (it acts
on 2-dimensional hyperball $B^{2}$).

PROOF. We divide the assertion in two parts:

(i) $\theta\left\{\begin{array}{l}a\\b\end{array}\right\}(0, \tau)/\theta\left\{\begin{array}{l}0\\0\end{array}\right\}(0, \tau)$ is algebraic,

(ii) $\theta\left\{\begin{array}{l}0\\0\end{array}\right\}(0, m\tau)/\theta\left\{\begin{array}{l}0\\0\end{array}\right\}(0, \tau)$ is algebraic.

At first we show (i). Let us recall the transformation formula:

(R-1) $\theta\left\{\begin{array}{l}\tilde{\epsilon}^{\prime}\\\tilde{\epsilon}’\end{array}\right\}(z\sim, \tau\sim)=K(M, \epsilon)\sqrt{c\tau+d}\cdot\exp(\frac{\pi icz^{2}}{c\tau+d})\theta\left\{\begin{array}{l}\epsilon^{\prime}\\\epsilon’\end{array}\right\}(z, \tau)$ ,
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