Tokyo J. Math. Vol. 11, No. 1, 1988

On the Algebraicity of the Ratio of Special Theta Constants

Hironori SHIGA

Chiba University (Communicated by M. Mori)

In this paper we treat the special value of the Riemann θ function with characteristic ${}^{t}[a, b]$ $(a, b \in Q)$:

$$\theta \begin{bmatrix} a \\ b \end{bmatrix} (z, \tau) = \sum_{n \in \mathbb{Z}} \exp\{\pi i (n+a)^2 \tau + 2\pi i (n+a) (z+b)\},$$

where $z, \tau \in C$ and $\text{Im } \tau > 0$. We show the following proposition:

PROPOSITION RA. Suppose τ is an imaginary quadratic number with Im $\tau > 0$, then

$$\theta \begin{bmatrix} a \\ b \end{bmatrix} (0, m\tau) \Big/ \theta \begin{bmatrix} a' \\ b' \end{bmatrix} (0, \tau)$$

is an algebraic number for any a, b, a', b' of Q and any positive integer m, provided the denominator does not vanish.

This result plays a role of key stone in the forthcoming work concerning the modular form relative to the Picard modular group (it acts on 2-dimensional hyperball B^2).

PROOF. We divide the assertion in two parts: (i) $\theta \begin{bmatrix} a \\ b \end{bmatrix} (0, \tau) / \theta \begin{bmatrix} 0 \\ 0 \end{bmatrix} (0, \tau)$ is algebraic, (ii) $\theta \begin{bmatrix} 0 \\ 0 \end{bmatrix} (0, m\tau) / \theta \begin{bmatrix} 0 \\ 0 \end{bmatrix} (0, \tau)$ is algebraic.

At first we show (i). Let us recall the transformation formula:

(R-1)
$$\theta \begin{bmatrix} \tilde{\varepsilon}' \\ \tilde{\varepsilon}'' \end{bmatrix} (\tilde{z}, \tilde{\tau}) = K(M, \varepsilon) \sqrt{c\tau + d} \cdot \exp\left(\frac{\pi i c z^2}{c\tau + d}\right) \theta \begin{bmatrix} \varepsilon' \\ \varepsilon'' \end{bmatrix} (z, \tau) ,$$

Received February 19, 1987