Токуо Ј. Матн. Vol. 11, No, 1, 1988

Asymptotic Distribution of Eigenvalues of Non-Symmetric Elliptic Operators

Tetsutaro SHIBATA

Tokyo Metropolitan University (Communicated by K. Ogiue)

Introduction.

In this paper we study asymptotic formulas of distributions of eigenvalues of operators associated with strongly elliptic sesquilinear forms which have non-symmetric top terms.

For operators associated with symmetric forms, Maruo-Tanabe [6] and Tsujimoto [10, 11] gave remainder estimates depending upon the smoothness of the coefficients. Maruo [7] refined and extended the results of [6] to the forms which have symmetric top terms and non-symmetric lower terms. For differential operators, Robert [9] obtained the same results as [7].

As for operators associated with the forms with non-symmetric top terms, however, only the result by Watanabe [13] seems to have been given. He assumed C^h -smoothness for the coefficients of the top terms to clarify his intention to give the formula for eigenvalues which distribute in a sector of the complex plane.

The purpose of this paper is to establish an asymptotic formula with the optimal remainder estimate in the case of $C^{1+\hbar}$ -smoothness. In the symmetric case, our result coincides with Maruo's formula.

Now, we explain notations before stating our result. Let $\Omega \subset \mathbb{R}^n$ $(n \ge 2)$ be a bounded domain possessing the restricted cone property (see [1, p. 11]). Set $\Omega_{\varepsilon} = \{x \in \Omega; \delta(x) \ge \varepsilon\}$ with $\varepsilon > 0$ where $\delta(x) = \min\{1, \operatorname{dist}(x, \partial \Omega)\}$ for $x \in \Omega$. We impose on Ω the following condition: There exists a constant C > 0 such that for any $\varepsilon > 0$

(0.1)
$$\int_{\mathcal{Q}_{\epsilon}} \delta^{-1}(x) dx < C |\log \varepsilon|;$$

Received September 8, 1986 Revised August 28, 1987