Tokyo J. Math. Vol. 11, No. 2, 1988

On a Full Spectrum Condition for 2-Dimensional Linear Quasi-Periodic Systems

Ichiro TSUKAMOTO

Keio University (Communicated by S. Koizumi)

 \S 1. In this paper, we consider the problem concerning linear quasiperiodic systems. Before starting our discussions, we state the following definitions.

DEFINITION 1 ([2, 3]). A real number λ is called a characteristic exponent of the system

(1.1)
$$\dot{x} = C(t)x$$
, $t \in \mathbf{R}$, $\cdot = \frac{d}{dt}$,

if there exists a solution x(t) of (1.1) which satisfies

 $\limsup_{t\to\infty} t^{-1} \log |x(t)| = \lambda .$

DEFINITION 2 ([4]). If the number of characteristic exponents of (1.1) is equal to the dimension of (1.1), then we say that (1.1) has full spectrum.

Now, let there be given a linear almost periodic system

$$\dot{x} = C(t)x , \qquad x \in \mathbf{R}^n .$$

If (1.2) has full spectrum, then it is shown in [1] that (1.2) has a fundamental matrix X(t) of the form

$$X(t) = F(t) \operatorname{diag}\left(\exp\left(\int_{0}^{t} d_{1}(s) ds\right), \cdots, \exp\left(\int_{0}^{t} d_{n}(s) ds\right)\right)$$

where F(t) is an almost periodic matrix function and $d_i(t)$ $(i=1, \dots, n)$ are almost periodic functions. Also it is shown in [4] that, if (1.2) is especially a linear quasi-periodic system whose coefficient matrix satisfies a nonresonance condition and a smoothness condition and if (1.2) has

Received January 19, 1988 Revised June 1, 1988