TOKYO J. MATH. Vol. 11, No. 2, 1988

A Non-Existence Result for Harmonic Mappings from R^n into H^n

Atsushi TACHIKAWA

Keio University (Communicated by M. Obata)

§0. Introduction.

The purpose of this paper is to give a non-existence result for harmonic mappings defined on the whole \mathbb{R}^n , a Euclidean *n*-space $(n \ge 2)$, into a real hyperbolic *n*-space \mathbb{H}^n .

For harmonic mappings $U: M \to N$ (M, N: complete Riemannian manifolds) some Liouville type theorems have been proved. By S. Hildebrandt – J. Jost – K.-O. Widman [4] it has been shown that a harmonic mapping $U: M \to N$ must be a constant mapping if M is simple and image U(M) is contained in a geodesic ball $B_E(Q) \subset N$ with $R < \pi/(2\sqrt{\kappa})$ where κ denotes the maximum of the sectional curvatures of N. Here, a Riemannian manifold is said to be simple, if it is topologically \mathbb{R}^m furnished with a metric for which the associated Laplace-Beltrami operator is uniformly elliptic on \mathbb{R}^m . (See also [1] and [6].) Moreover by L. Karp [5] it has been shown that, for a complete, noncompact Riemannian manifold M and a simply-connected Riemannian manifold N with nonpositive sectional curvature, a nonconstant harmonic mapping $U: M \to N$ satisfies a certain growth-order condition. This implies a non-existence theorem for harmonic mappings under some growth condition. On the contrary, our non-existence theorem in this paper requires no growth condition.

In order to describe our main result precisely we introduce some notations: We use a standard coordinate system $x = (x^1, \dots, x^n)$ on \mathbb{R}^n and a normal coordinate system $u = (u^1, \dots, u^n)$ centered at some point P_0 on \mathbb{H}^n . $\langle \cdot, \cdot \rangle$ and $|\cdot|$ stand for the Euclidean scalar product and norm. We shall write $(g_{ij}(u))$ for the metric tensor on \mathbb{H}^n with respect to the normal coordinate system $(u^i)_{1 \leq i \leq n}$, $(g^{ij}(u))$ for the inverse of $(g_{ij}(u))$, and the Christoffel symbols of the first and second kind of the Levi-Civita connection on \mathbb{H}^n will be denoted by Γ_{ijk} and Γ_{jk}^i .

A mapping $U: \mathbb{R}^n \to \mathbb{H}^n$ is said to be a harmonic mapping if it is of Received August 26, 1987