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\S 1. Introduction.

Let $M$ be a compact complex manifold, $G$ any compact subgroup of
the complex Lie group of all holomorphic automorphisms of $M$ and $\mathfrak{G}$ the
Lie algebra of $G$ which consists of holomorphic vector fields on $M$. In
[5], the first author defined a character $f:\mathfrak{G}\rightarrow C$ (more generally defined
a C-character of the complex Lie algebra of all holomorphic vector fields
on $M$) which depends only on the complex structure of $M$ and vanishes
if $M$ admits a Kaehler-Einstein metric. In this paper, we first see that
characters of this kind appear naturally in the Lefschetz numbers. More
precisely, let $\mathcal{D}$ be the Dolbeault complex of $M$ with values in a certain
holomorphic vector bundle over $M$ and $H^{i}$ the i-th cohomology group of
$\mathcal{D}$. Then the Lefschetz number $L(g)$ , for $g\in G$ , is by definition

$L(g)=\sum_{i}(-1)^{i}tr(g|_{H^{i}})$ .
In Theorem 4.3, we show that $f(X)$ , for $X\in \mathfrak{G}$ , coincides up to constant
with the second term of the Taylor expansion of $L(\exp tX)$ whose first
term is of course the arithmetic genus of $\mathcal{D}$. Then it becomes clear that
$f$ depends only on the complex structure of $M$ and that $f(Ad(g)X)=f(X)$
for any $geG$ .

Now we wish to put this view point into a single diagram. Let $G$

and $H$ be compact Lie groups with Lie algebras $\mathfrak{G}$ and $\mathfrak{H}$ . Let $M$ be a
compact oriented manifold of dimension $2m$ and $P$ a principal right H-
bundle over $M$. Suppose that $G$ acts on $P\rightarrow M$ on the left as bundle
automorphisms and that the action of $G$ on $M$ is orientation-preserving.
Let $\theta$ be a G-invariant connection of $P$. Then, as in [4], an H-equivariant
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