On Certain Homogeneous Diophantine Equations of Degree $\boldsymbol{n}(\boldsymbol{n}-1)$

Kenzo KOMATSU
Keio University
(Communicated by Y. Ito)

1. In [3] Hilbert treated the Diophantine equation $D=D\left(x_{0}, x_{1}, \cdots\right.$, $\left.x_{n}\right)= \pm 1$, where

$$
D=x_{0}^{2 n-2} \Pi\left(t_{i}-t_{k}\right)^{2} \quad(i=1,2, \cdots, n ; k=i+1, i+2, \cdots, n)
$$

is the discriminant of

$$
x_{0} t^{n}+x_{1} t^{n-1}+\cdots+x_{n}=0
$$

with undetermined coefficients, and roots $t_{1}, t_{2}, \cdots, t_{n}$. He showed that, if $n>3$, the equation $D= \pm 1$ has no integer solutions. The proof is based on the theorem that the discriminant of an algebraic number field of degree $n>1$ is distinct from ± 1. Is his method applicable to other Diophantine equations?

In the present paper we discuss the homogeneous equation

$$
\begin{equation*}
a^{s}(n-1)^{n-1} x^{n(n-1)}+n^{n} y^{n(n-1)}=A \boldsymbol{z}^{n(n-1)}, \tag{1.1}
\end{equation*}
$$

where a, s, n, A are rational integers satisfying the following conditions:
(1) a is square-free, $|a| \neq 1$;
(2) $s \geqq 1, n \geqq 3, s<2(n-1), A \neq 0$;
(3) $(n, a s A)=((n-1) a, A)=1$.

The equation (1.1) may have non-trivial integer solutions; for example, if $A=a^{s}(n-1)^{n-1}+n^{n}$, then $x=y=z=1$ is a solution of (1.1). However, if A satisfies a certain condition, (1.1) has no integer solutions except $x=y=z=0$ (Theorem 1). The proof depends on a result of Komatsu [4] and Minkowski's inequality on the discriminant of an algebraic number field.
2. For simplicity, we shall use the following notation: For a prime

[^0]
[^0]: Received September 19, 1988

