On Certain Homogeneous Diophantine Equations of Degree n(n-1)

Kenzo KOMATSU

Keio University
(Communicated by Y. Ito)

1. In [3] Hilbert treated the Diophantine equation $D=D(x_0, x_1, \dots, x_n)=\pm 1$, where

$$D=x_0^{2n-2}\prod(t_i-t_k)^2$$
 $(i=1, 2, \dots, n; k=i+1, i+2, \dots, n)$

is the discriminant of

$$x_0t^n + x_1t^{n-1} + \cdots + x_n = 0$$
,

with undetermined coefficients, and roots t_1, t_2, \dots, t_n . He showed that, if n>3, the equation $D=\pm 1$ has no integer solutions. The proof is based on the theorem that the discriminant of an algebraic number field of degree n>1 is distinct from ± 1 . Is his method applicable to other Diophantine equations?

In the present paper we discuss the homogeneous equation

$$(1.1) a^{s}(n-1)^{n-1}x^{n(n-1)} + n^{n}y^{n(n-1)} = Az^{n(n-1)},$$

where a, s, n, A are rational integers satisfying the following conditions:

- (1) a is square-free, $|a| \neq 1$;
- (2) $s \ge 1$, $n \ge 3$, s < 2(n-1), $A \ne 0$;
- (3) (n, asA) = ((n-1)a, A) = 1.

The equation (1.1) may have non-trivial integer solutions; for example, if $A=a^s(n-1)^{n-1}+n^n$, then x=y=z=1 is a solution of (1.1). However, if A satisfies a certain condition, (1.1) has no integer solutions except x=y=z=0 (Theorem 1). The proof depends on a result of Komatsu [4] and Minkowski's inequality on the discriminant of an algebraic number field.

2. For simplicity, we shall use the following notation: For a prime Received September 19, 1988