On Two Variable p-Adic L-Functions and a p-Adic Class Number Formula

Kazuhito KOZUKA
Kyushu University
(Communicated by H. Wada)

Introduction.

Let K be an imaginary quadratic field with class number 1 and discriminant $-d_{K}$ lying inside the complex number field C, and denote by O the ring of integers of K. Let E be an elliptic curve defined over K with complex multiplication by O. We denote by ψ the Grössencharacter of E over K, and by f the conductor of ψ. Fix a Weierstrass model for E

$$
\begin{equation*}
y^{2}=4 x^{3}-g_{2} x-g_{3} \tag{0.1}
\end{equation*}
$$

such that $g_{2}, g_{3} \in O$ and the discriminant $\Delta=g_{2}^{3}-27 g_{3}^{2}$ of (0.1) is divisible only by primes dividing $6 f$. Let $P(z)$ be the Weierstrass pe-function associated with (0.1), and L the period lattice of $P(z)$. Fix an element $\Omega_{\infty} \in L$ such that $L=\Omega_{\infty} O$.

Let p be a rational prime number prime to $6 d_{K} f$ and we assume that p splits in K, say $(p)=\mathfrak{p} \bar{p}$. We denote by $K_{\mathfrak{p}}$ the completion of K at \mathfrak{p} and identify $K_{\mathfrak{p}}$ with the rational p-adic number field \boldsymbol{Q}_{p}. Let \boldsymbol{C}_{p} be the completion of the algebraic closure of K_{p}, and denote by I the ring of integers of \boldsymbol{C}_{p}. Let $\overline{\boldsymbol{Q}}$ denote the algebraic closure of the rational number field \boldsymbol{Q} in \boldsymbol{C}. Fixing an embedding of $\overline{\boldsymbol{Q}}$ in \boldsymbol{C}_{p}, we regard $\overline{\boldsymbol{Q}}$ also as a field contained in $\boldsymbol{C}_{\boldsymbol{p}}$.

If Ψ is a Grössencharacter of K, we denote by $L(\Psi, s)$ the primitive complex Hecke L-function attached to Ψ. For each integral ideal a of K, let R_{a} denote the ray class field modulo \mathfrak{a} of K. If \mathfrak{a} is divisible by the conductor of Ψ, then, for each $\sigma \in \operatorname{Gal}\left(R_{\mathrm{a}} / K\right)$, we denote by $L_{a}(\sigma, \Psi, s)$ the partial zeta function attached to Ψ and $\sigma \in \operatorname{Gal}\left(R_{\mathrm{a}} / K\right)$.

If χ is a primitive class character of K, we put

[^0]
[^0]: Received March 4, 1988

