On the Power Series Coefficients of the Riemann Zeta Function

Yasushi MATSUOKA

Shinshu University
(Communicated by S. Koizumi)

§ 1. Introduction and the main result.

The Laurent expansion of the Riemann zeta function $\zeta(s)$ about the pole can be written in the form, in [2],

$$
\begin{equation*}
\zeta(s)=\frac{1}{s-1}+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \gamma_{n}(s-1)^{n} \tag{1}
\end{equation*}
$$

with

$$
\gamma_{n}=\lim _{N \rightarrow \infty}\left(\sum_{k=1}^{N} \frac{\log ^{n} k}{k}-\frac{\log ^{n+1} N}{n+1}\right) .
$$

Here $\log ^{0} k$ mean 1 for all k including $k=1 . \quad \gamma_{0}$ is the well known Euler constant, and, for $n \geqq 1, \gamma_{n}$, sometimes called generalized Euler constants, have been studied by many authors ([1], Entry 13; or [3], p. 51). In this paper we shall give an asymptotic expansion of γ_{n} for arbitrary large n, which yields some interesting results on γ_{n}. They can be found in [4].

We begin by defining some notations. Let N be a nonnegative integer, and let n be a positive integer. In order to write our theorem, we need two functions $a=a(n)$ and $b=b(n)$ which are given by the following lemma.

Lemma 1. If $n>c_{1}$, where c_{1} is a sufficiently large constant, then the system of the equations

$$
\begin{align*}
& -(n+1) \frac{y}{x^{2}+y^{2}}+\frac{1}{2} \pi-\operatorname{Im} \psi(x+i y)=0, \tag{2}\\
& -(n+1) \frac{x}{x^{2}+y^{2}}-\log 2 \pi+\operatorname{Re} \psi(x+i y)=0, \tag{3}
\end{align*}
$$

with unknown x and y, satisfying $0<y<x$ and $n^{1 / 2}<x<n$, has a unique

[^0]
[^0]: Received February 4, 1988

