Токуо J. Матн. Vol. 12, No. 1, 1989

On the Power Series Coefficients of the Riemann Zeta Function

Yasushi MATSUOKA

Shinshu University (Communicated by S. Koizumi)

§1. Introduction and the main result.

The Laurent expansion of the Riemann zeta function $\zeta(s)$ about the pole can be written in the form, in [2],

(1)
$$\zeta(s) = \frac{1}{s-1} + \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \gamma_n (s-1)^n$$

with

$$\gamma_n = \lim_{N \to \infty} \left(\sum_{k=1}^{N} \frac{\log^n k}{k} - \frac{\log^{n+1} N}{n+1} \right).$$

Here $\log^0 k$ mean 1 for all k including k=1. γ_0 is the well known Euler constant, and, for $n \ge 1$, γ_n , sometimes called generalized Euler constants, have been studied by many authors ([1], Entry 13; or [3], p. 51). In this paper we shall give an asymptotic expansion of γ_n for arbitrary large n, which yields some interesting results on γ_n . They can be found in [4].

We begin by defining some notations. Let N be a nonnegative integer, and let n be a positive integer. In order to write our theorem, we need two functions a=a(n) and b=b(n) which are given by the following lemma.

LEMMA 1. If $n > c_1$, where c_1 is a sufficiently large constant, then the system of the equations

(2)
$$-(n+1)\frac{y}{x^2+y^2}+\frac{1}{2}\pi-\mathrm{Im}\,\psi(x+iy)=0$$
,

(3)
$$-(n+1)\frac{x}{x^2+y^2} - \log 2\pi + \operatorname{Re} \psi(x+iy) = 0$$
,

with unknown x and y, satisfying 0 < y < x and $n^{1/2} < x < n$, has a unique Received February 4, 1988