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\S 1. The main theorem.

Let $\omega(n)$ denote the number of distinct prime factors of a positive
integer $n$ .

Let $k$ and $t$ be positive integers;
let $a_{1},$ $\cdots,$ $a_{k}$ be distinct non-zero integers;
let $a_{k+1},$ $\cdots,$ $a_{k+l}$ be distinct integers.

We put, for $\alpha_{i}<\beta_{i},$ $i=1,$ $\cdots,$ $k+t$ ,

$\Phi(\alpha_{i}, \beta_{i})=\frac{1}{\sqrt{2\pi}}\int_{\alpha}^{\rho_{i}}\exp(-\frac{x^{2}}{2})dx$ .
Let $N$ be a positive integer, which will be assumed to be sufficiently

large as occasion demands.

THEOREA. Let $A(N)=A(N;a_{1}, \cdots, a_{k+l};\alpha_{1}, \beta_{1}, \cdots, \alpha_{k+l}, \beta_{k+l})$ denote the
number of representations of $N$ as the sum of the form $N=p+n$ , where
$p$ is prime, and $n$ is a positive integer such that

$\log\log N+\alpha_{i}\sqrt{\log\log N}<\omega(p+a_{i})<\log\log N+\beta_{i}^{\sqrt{\log\log N}}$

for $i=1,$ $\cdots,$
$k$ , and

$\log\log N+\alpha_{i}\sqrt{\log\log N}<\omega(n+a_{i})<\log\log N+\beta_{i}^{\sqrt{}}\overline{\log\log N}$

for $i=k+1,$ $\cdots,$ $k+t$ simultaneously. Then, as $ N\rightarrow\infty$ , we have

$A(N)\sim\frac{N}{\log N}\cdot\prod_{l=1}^{k+l}\Phi(\alpha_{i}, \beta_{i})$ .

The paper will be read without making any references to author’s
previous papers, except for the proof of Lemma 4.
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