Токуо Ј. Матн. Vol. 12, No. 2, 1989

On Asymptotic Stability for the Yang-Mills Gradient Flow

Hideo KOZONO and Yoshiaki MAEDA

Nagoya University and Keio University

Dedicated to Professor Hiroshi Fujita on his sixtieth birthday

§1. Introduction and statement of results.

The purpose of this paper is to study the asymptotic stability in $W^{m,r}$ -sense for the Yang-Mills gradient flow around stable Yang-Mills connections.

We first concern with a closed connected Riemannian *n*-manifold (M, h) and consider a G-vector bundle $E = P \times_{\rho} \mathbb{R}^{N}$ associated with a G-principal bundle P over M. Here, G is a compact connected Lie group and ρ is a faithful orthogonal representation $\rho: G \to O_{N}$ of G.

On the space C_E of connections on E preserving the inner product of E, we consider the Yang-Mills functional (Y-M functional)

$$YM(\nabla) = \frac{1}{2} \int_{M} |R^{\nabla}|^2 d_h x . \qquad (1.1)$$

Here R^{∇} and $d_h x$ denote the curvature tensor of connection ∇ and the Riemannian measure on (M, h), respectively and | | is the norm determined by the inner product on E.

A critical point of the above functional (1.1) is called a Yang-Mills connection (a Y-M connection) and the corresponding curvature field is called the Yang-Mills field (the Y-M field), respectively. A Y-M connection is said to be stable if it minimizes (1.1) locally. Moreover, a Y-M connection ∇ is said to be strictly stable if the second variation of Y-M functional at ∇ is strictly positive on a transversal orbit of the gauge group action on C_E (see Definition 2.1). These notions are referred to Bourguignon-Lawson [3]. Typical examples of the stable Y-M connections are well-known self-dual connections on 4-sphere S⁴. Moreover,

Received November 15, 1988 Revised June 1, 1989