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\S 1. Introduction and statement of results.

The purpose of this paper is to study the asymptotic stability in
$W^{m,r}$-sense for the Yang-Mills gradient flow around stable Yang-Mills
connections.

We first concern with a closed connected Riemannian n-manifold
$(M, h)$ and consider a G-vector bundle $E=PX_{\rho}R^{N}$ associated with a G-
principal bundle $P$ over $M$. Here, $G$ is a compact connected Lie group
and $\rho$ is a faithful orthogonal representation $\rho:G\rightarrow 0_{N}$ of $G$ .

On the space $C_{E}$ of connections on $E$ preserving the inner product
of $E$, we consider the Yang-Mills functional (Y-M functional)

$YM(\nabla)=\frac{1}{2}\int_{H}|R^{\nabla}|^{2}d_{h}x$ . (1.1)

Here $R^{\nabla}$ and $d_{h}x$ denote the curvature tensor of connection $\nabla$ and the
Riemannian measure on $(M, h)$ , respectively and $||$ is the norm determined
by the inner product on $E$.

A critical point of the above functional (1.1) is called a Yang-Mills
connection (a Y-M connection) and the corresponding curvature field is
called the Yang-Mills field (the Y-M field), respectively. A Y-M connec-
tion is said to be stable if it minimizes (1.1) locally. Moreover, a Y-M
connection $\nabla$ is said to be strictly stable if the second variation of Y-M
functional at $\nabla$ is strictly positive on a transversal orbit of the gauge
group action on $C_{E}$ (see Definition 2.1). These notions are referred to
Bourguignon-Lawson [3]. Typical examples of the stable Y-M connec-
tions are well-known self-dual connections on 4-sphere $S^{4}$ . Moreover,
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