Tokyo J. Math. Vol. 12, No. 2, 1989

An Example of a Normal Isolated Singularity with Constant Plurigenera δ_m Greater than 1

Hiroyasu TSUCHIHASHI

Tohoku Gakuin University (Communicated by N. Iwahori)

Introduction. The plurigenera $\delta_m(X, x)$ of normal isolated singularities (X, x) were defined by Watanabe [4], as analogies of plurigenera P_m of complex manifolds. Thus δ_m have the properties similar to P_m . For instance, if P_m are bounded, then P_m are not greater than 1. The plurigenera of two-dimensional normal isolated singularities behave in the same way [1, Corollary 3.2]. However, higher dimensional normal isolated singularities may have the plurigenera δ_m greater than 1, although δ_m are bounded. The purpose of this paper is to give an example of such a normal isolated singularity.

Let $f: (\tilde{X}, E) \to (X, x)$ be a good resolution of an isolated singularity (X, x). Namely, each irreducible component E_i of the exceptional set $E = E_1 + E_2 + \cdots + E_i$ is a non-singular divisor on \tilde{X} and E has only normal crossings as the singularities. We denote by C_i the divisor $\sum_{j \neq i} D_{ij}$ $(=E_i \cdot (E-E_i))$ on E_i , where D_{ij} is the intersection $E_i \cdot E_j$ of E_i and E_j .

DEFINITION [4, 5].

 $\delta_m(X, x) = \dim\{H^{\circ}(X \setminus \{x\}, \mathcal{O}_X(mK_X))/H^{\circ}(\widetilde{X}, \mathcal{O}_{\widetilde{X}}(mK_{\widetilde{X}} + (m-1)E))\}.$

Here we note that the above definition does not depend on the choice of resolutions $(\tilde{X}, E) \rightarrow (X, x)$ by [2, Theorem 2.1].

THEOREM. $\delta_m = s$ for each positive integer m, if

 $\dim H^{0}(E_{i}, \mathcal{O}(mK_{E_{i}}+(k-m)[E_{i}]_{|E_{i}}+kC_{i})) = \begin{cases} 0 & for \quad k > m > 0 \\ 1 & for \quad k = m > 0 \end{cases},$

for each E_i and if

Received September 30, 1988