On the Fractal Curves Induced from the Complex Radix Expansion

Shunji ITO
Tsuda College

§ 0. Introduction.

Let α be a quadratic integer in a complex quadratic field $Z(\sqrt{m} i)$ and $N(=N(\alpha))$ be the norm of α. Let \mathscr{D} be a set of quadratic integers in $\boldsymbol{Z}(\sqrt{m})$ whose cardinality is equal to the norm of α, and denote it by

$$
\mathscr{D}=\left\{r_{0}, r_{1}, \cdots, r_{N-1}\right\}, \quad r_{i} \in \boldsymbol{Z}(\sqrt{m i}) .
$$

A pair (α, \mathscr{D}) is called a number system on $Z(\sqrt{m} i)$ if every quadratic integer β in $Z(\sqrt{m} i)$ is uniquely represented in the form

$$
\begin{equation*}
\beta=r_{0}+r_{1} \alpha+\cdots+r_{j} \alpha^{j}, \quad r_{i} \in \mathscr{D} \quad(0 \leqq i \leqq j) \tag{0.1}
\end{equation*}
$$

and we say that β is expanded with base α and digits $r_{i}(0 \leqq i \leqq j)$ if it is so represented. Most primitive example of the number system found in [9] and [10] is as follows: take $\alpha=i-1$ and $\mathscr{D}=\{0,1\}$, then

1) (α, \mathscr{O}) is a number system on Gaussian field $\boldsymbol{Z}(i)$, and
2) the Hausdorff dimension of the boundary of the set

$$
X_{i-1}=\left\{\sum_{k=1}^{\infty} a_{k}(i-1)^{-k} \mid a_{k} \in \mathscr{D}\right\}
$$

is equal to

$$
\frac{2 \log \lambda}{\log 2} \doteqdot 1.5236
$$

where λ is the positive root of $\lambda^{3}-\lambda^{2}-2=0$. This fact is extended as follows:

Theorem (Katai-Szabo [8] and Gilbert [7]). Let α be an integer in $\boldsymbol{Z}(i)$ and take $\mathscr{O}=\{0,1,2, \cdots, N-1\}$, then

[^0]
[^0]: Received April 4, 1988
 Revised February 10, 1989

