Tokyo J. Math. Vol. 12, No. 2, 1989

On the Fractal Curves Induced from the Complex Radix Expansion

Shunji ITO

Tsuda College

§0. Introduction.

Let α be a quadratic integer in a complex quadratic field $Z(\sqrt{m}i)$ and $N (=N(\alpha))$ be the norm of α . Let \mathscr{D} be a set of quadratic integers in $Z(\sqrt{m}i)$ whose cardinality is equal to the norm of α , and denote it by

$$\mathscr{D} = \{r_0, r_1, \cdots, r_{N-1}\}, \qquad r_i \in \mathbb{Z}(\sqrt{m}i).$$

A pair (α, \mathscr{D}) is called a *number system* on $Z(\sqrt{m}i)$ if every quadratic integer β in $Z(\sqrt{m}i)$ is uniquely represented in the form

$$\beta = r_0 + r_1 \alpha + \dots + r_j \alpha^j , \qquad r_i \in \mathscr{D} \quad (0 \le i \le j) \tag{0.1}$$

and we say that β is expanded with base α and digits $r_i (0 \le i \le j)$ if it is so represented. Most primitive example of the number system found in [9] and [10] is as follows: take $\alpha = i-1$ and $\mathcal{D} = \{0, 1\}$, then

1) (α, \mathcal{D}) is a number system on Gaussian field Z(i), and

2) the Hausdorff dimension of the boundary of the set

$$X_{i-1} = \left\{ \sum_{k=1}^{\infty} a_k (i-1)^{-k} \mid a_k \in \mathscr{D} \right\}$$

is equal to

$$\frac{2\log\lambda}{\log 2} \doteqdot 1.5236$$

where λ is the positive root of $\lambda^{8} - \lambda^{2} - 2 = 0$. This fact is extended as follows:

THEOREM (Katai-Szabo [8] and Gilbert [7]). Let α be an integer in Z(i) and take $\mathcal{D} = \{0, 1, 2, \dots, N-1\}$, then

Received April 4, 1988 Revised February 10, 1989