TOKYO J. MATH. Vol. 12, No. 2, 1989

A Transform on Classical Bounded Symmetric Domains Associated with a Holomorphic Discrete Series

Takeshi KAWAZOE

Keio University

§1. Introduction.

In order to explain the aim of this paper we shall look at an example by taking the Poincaré model of the hyperbolic plane D and then consider its generalization.

1.1. Let D be the open unit disk |z| < 1 in C with the usual manifold structure but given the Riemannian structure

$$ds^{2} = (1 - x^{2} - y^{2})^{-2}(dx^{2} + dy^{2}) \qquad (z = x + iy) .$$
(1.1)

Let G = SU(1, 1) be the group of all *C*-linear transformations of C^2 preserving $|z_1|^2 - |z_2|^2$ and of determinant one. Then each element g of Gacts transitively on D as an analytic automorphism of D under

$$z \to z \cdot g = (\bar{\alpha}z + \beta)/(\bar{\beta}z + \alpha) \tag{1.2}$$

and K=SO(2) is the subgroup of G fixing 0 in D, so we have the identification: $D=SO(2)\backslash SU(1, 1)$. If f is a complex valued function on D, its Fourier transform f^{\uparrow} on $C \times \partial D$, ∂D the boundary of D, is defined as follows:

$$f^{(\lambda, b)} = \int_{D} f(z) e^{\langle i \lambda + 1 \rangle \langle z, b \rangle} dz \qquad (\lambda \in C, b \in \partial D)$$
(1.3)

for which this integral exists. Here $\langle z, b \rangle$ is the number given by the relation

$$e^{2\langle z,b\rangle} = (1-|z|^2)/|z-b|^2 \qquad (\lambda \in C, \ b \in \partial D) \ . \tag{1.4}$$

Then the characterization of $L^2(D)^2$, the set of Fourier transforms of L^2 functions on D, is well-known as the Plancherel theorem on D (cf. [He],

Received February 5, 1988 Revised October 3, 1988