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\S 1. Introduction.

In order to explain the aim of this paper we shall look at an example
by taking the Poincar\’e model of the hyperbolic plane $D$ and then consider
its generalization.

1.1. Let $D$ be the open unit disk $|z|<1$ in $C$ with the usual manifold
structure but given the Riemannian $8tructure$

$ds^{2}=(1-x^{2}-y^{2})^{-2}(dx^{2}+dy^{2})$ $(z=x+iy)$ . ( $ 1.1\rangle$

Let $G=SU(1,1)$ be the group of all C-linear transformations of $C^{2}$ pre-
serving $|z_{1}|^{2}-|z_{2}|^{2}$ and of determinant one. Then each element $g$ of $G$

acts transitively on $D$ as an analytic automorphism of $D$ under
$z\rightarrow z\cdot g=(\overline{\alpha}z+\beta)/(\overline{\beta}z+\alpha)$ (1.2)

and $K=SO(2)$ is the subgroup of $G$ fixing $0$ in $D$, so we have the
identification: $D=SO(2)\backslash SU(1,1)$ . If $f$ is a complex valued function on
$D$ , its Fourier transform $f^{\wedge}$ on $C\times\partial D,$ $\partial D$ the boundary of $D$ , is defined
as follows:

$f^{\wedge}(x, b)=\int_{D}f(z)e^{(i\lambda+1)\langle z,b\rangle}dz$ $(x\in C, b\in\partial D)$ (1.3)

for which this integral exists. Here $\langle z, b\rangle$ is the number given by the
relation

$e^{2\langle b\rangle}l,=(1-|z|^{2})/|z-b|^{2}$ $(x\in C, be\partial D)$ . (1.4)

Then the characterization of $L^{2}(D)^{\wedge}$ , the set of Fourier transforms of $L^{a}$

functions on $D$, is well-known as the Plancherel theorem on $D$ (cf. [He],
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