Токуо Ј. Матн. Vol. 13, No. 1, 1990

The Pseudo Orbit Tracing Property of First Return Maps

Masatoshi OKA

Science University of Tokyo (Communicated by M. Mori)

Dedicated to Professor Kenichi Shiraiwa on his 60th birthday

§1. Introduction.

Every real flow without fixed points on a compact metric space induces a first return map on the union of sets in a certain family of local cross-sections, which was first introduced by H. Whitney [9] and after that improved by R. Bowen and P. Walters [2]. Our purpose is to investigate relationships between a real flow and its first return map with respect to the pseudo orbit tracing property.

H. B. Keynes and M. Sears [6] characterized already expansivity of a real flow by making use of a family of local cross-sections and a bijective first return map.

We denote by (X, \mathbf{R}) a real flow (abbrev. flow) without fixed points on a compact metric space X. Let d denote a metric for X and the action of $t \in \mathbf{R}$ on $x \in X$ is written xt. We write

 $SI = \{xt ; t \in I \text{ and } x \in S\}$

for an interval I and $S \subset X$, and

 $\varepsilon_0 = \inf\{t > 0 ; xt = x \text{ for some } x \in X\}$.

Then ε_0 is a positive number since the flow (X, R) has no fixed points and X is compact.

For positive numbers δ and a, a pair of doubly infinite sequences $(\{x_i\}_{i=-\infty}^{\infty}, \{t_i\}_{i=-\infty}^{\infty})$ is a (δ, a) -chain for (X, R) if $t_i \ge a$ and $d(x_i t_i, x_{i+1}) < \delta$ for all $i \in \mathbb{Z}$, and a pair of infinite sequences $(\{x_i\}_{i=0}^{\infty}, \{t_i\}_{i=0}^{\infty})$ is a half (δ, a) -chain for (X, R) if $t_i \ge a$ and $d(x_i t_i, x_{i+1}) < \delta$ for $i \ge 0$. A (δ, a) -

Received October 1, 1989 Revised February 2, 1990