On the Triviality Index of Knots

Yoshiyuki OHYAMA and Yasuko OGUSHI

Waseda University
(Communicated by S. Suzuki)

§ 1. Introduction.

In [6] the first author derived a new numerical invariant, denoted by $O(K)$, of knots from their diagrams and showed that if the Conway polynomial of a knot K is not one, then $O(K)$ is finite ([6] Corollary 2.4). In this paper, we call $O(K)$ the triviality index of K. It arises a problem as to whether or not there exists a knot K such that $O(K)=n$ for any natural number n.

In this paper, we show the following theorems.
Theorem A. If a knot K has a $2 n$-trivial diagram $(n>1)$, the coefficient of $z^{2 n}$ of the Conway polynomial of K is even.

Theorem B. For any natural number n with $n>1$, there exist infinitely many knots K 's with $O(K)=n$.

Moreover in the case $O(K)=3$ we show the following.
THEOREM C. Let $f(z)=1+\sum_{i=2}^{l} a_{2 i} z^{2 i}$, where $a_{2 i}(2 \leqq i \leqq l)$ are integers. If a_{4} is odd, there is a knot K such that $O(K)=3$ and the Conway polynomial of K is $f(z)$.

Throughout this paper, we work in PL-category and refer to Burde and Zieschang [1] and Rolfsen [8] for the standard definitions and results of knots and links.

§ 2. Definitions and facts.

The Conway polynomial $\nabla_{L}(z)$ ([2]) and the Jones polynomial $V_{L}(t)$ ([3]) are invariants of the isotopy type of an oriented knot or link in a 3 -sphere S^{3}. The Conway polynomial is defined by the following formulas:

[^0]
[^0]: Received August 23, 1989

