Tokyo J. Math. Vol. 13, No. 1, 1990

Interpolation between Some Banach Spaces in Generalized Harmonic Analysis

Katsuo MATSUOKA

Keio Shiki High School (Communicated by Y. Ito)

Dedicated to Professor Sumiyuki Koizumi on his sixtieth birthday

Introduction.

In [14, 15], N. Wiener established the generalized harmonic analysis for the analysis of almost periodic functions and sample paths of the Brownian motions. The classes of functions he treated are

(0.1)
$$W^{2}(\mathbf{R}^{1}) = \left\{ f \in L^{2}_{loc}(\mathbf{R}^{1}) : \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |f(x)|^{2} dx \text{ exists} \right\}$$

and its subclasses. The \mathbb{R}^2 case of the generalized harmonic analysis was investigated by K. Anzai, S. Koizumi and K. Matsuoka [1] and K. Matsuoka [10, 11], and also the \mathbb{R}^n case by T. Kawata [7].

Unfortunately, the class $W^2(\mathbf{R}^1)$ is not closed under addition. Hence, the following two more conventional Banach spaces were considered:

$$(0.2) M^{p}(\mathbf{R}^{1}) = \left\{ f \in L^{p}_{loc}(\mathbf{R}^{1}) : \|f\|_{\mathcal{M}^{p}(\mathbf{R}^{1})} = \overline{\lim_{T \to \infty}} \left(\frac{1}{2T} \int_{-T}^{T} |f(x)|^{p} dx \right)^{1/p} < \infty \right\}$$

which is called the Marcinkiewicz space, and

$$(0.3) \qquad B^{p}(\mathbf{R}^{1}) = \left\{ f \in L^{p}_{loc}(\mathbf{R}^{1}) : \|f\|_{B^{p}(\mathbf{R}^{1})} = \sup_{T \geq 1} \left(\frac{1}{2T} \int_{-T}^{T} |f(x)|^{p} dx \right)^{1/p} < \infty \right\},$$

where 1 . Recently, K. Lau [8, 9] investigated the multiplier theory $on <math>M^{p}(\mathbf{R}^{1})$. Also, Y. Chen and K. Lau [5] developed the harmonic analysis on $B^{p}(\mathbf{R}^{1})$ and the related spaces (e.g., the Hardy-Littlewood maximal function, the Hardy spaces, John-Nirenberg's *BMO*, the Carleson measure, the atomic decomposition, and Fefferman-Stein's duality).

Received May 23, 1989