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Introduction.

In $[14, 15]$ , N. Wiener established the generalized harmonic analysis
for the analysis of almost periodic functions and sample paths of the
Brownian motions. The classes of functions he treated are

(0.1) $W(R^{1})=\{f\in L_{1oe}^{2}(R^{1})$ : $\lim_{T\rightarrow\infty}\frac{1}{2T}\int_{-T}^{T}|f(x)|^{2}dxexists\}$

and its $8ubclas8es$ . The $R^{2}$ case of the generalized harmonic analysis was
investigated by K. Anzai, S. Koizumi and K. Matsuoka [1] and K. Matsuoka
$[10, 11]$ , and also the $R^{n}$ case by T. Kawata [7].

Unfortunately, the class $W(R^{1})$ is not closed under addition. Hence,

the following two more conventional Banach spaces were considered:

(0.2) $M^{p}(R^{1})=\{f\in L_{1oc}^{p}(R^{1})$ : $||f||_{r^{p_{(R^{1})}}}=\varlimsup_{T\rightarrow\infty}(\frac{1}{2T}\int_{-T}^{T}|f(x)|pdx)^{1/p}<\infty\}$ ,

which is called the Marcinkiewicz space, and

(0.3) $B^{p}(R^{1})=\{feL_{1oc}^{p}(R^{1})$ : $\Vert f||_{B^{p}(R^{1})}=\sup_{\tau\geq 1}(\frac{1}{2T}\int_{-\tau}^{T}|f(x)|pdx)^{1/p}<\infty\}$ ,

where $ 1<p<\infty$ . Recently, K. Lau $[8, 9]$ investigated the multiplier theory
on $M^{p}(R^{1})$ . Also, Y. Chen and K. Lau [5] developed the harmonic analysis
on $B^{p}(R^{1})$ and the related spaces (e.g., the Hardy-Littlewood maximal
function, the Hardy spaces, John-Nirenberg’s $BMO$ , the Carleson measure,
the atomic decomposition, and Fefferman-Stein’s duality).
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