Токуо Ј. Матн. Vol. 13, No. 2, 1990

Spherical Hypersurfaces with Low Type Quadric Representation

Ivko DIMITRIĆ

Michigan State University (Communicated by T. Nagano)

§0. Introduction.

Let S^{m-1} be the unit hypersphere of the Euclidean *m*-space E^m centered at the origin, embedded in the standard way. Then any submanifold of S^{m-1} we call spherical. If M^n is a compact spherical submanifold minimal in S^{m-1} then it is well known that the Euclidean coordinate functions restricted to M are eigenfunctions of the Laplacian Δ on M^n with the same eigenvalue n (see [25]). Spectral behavior of a spherical submanifold can be also nicely related to the second standard immersion ℓ of S^{m-1} . For example, A. Ros [20] studied compact minimal spherical submanifolds via the second standard immersion. He obtained characterization of those that are described by means of two different eigenvalues of Δ , i.e. those which are of 2-type via ι (for precise definition of k-type submanifolds see the next section). He showed that such Then M. Barros submanifolds are Einstein and mass-symmetric via c. and B.Y. Chen [2] obtained generalization of Ros' characterization for spherical submanifolds which are mass-symmetric and of 2-type via c. They also classified hypersurfaces of S^{m-1} which are mass-symmetric and of 2-type via the second standard immersion.

Let $x: M^n \to S^{m-1} \subset E^m$ be an isometric immersion and regard $x = (x_1, \dots, x_m)^t$ as a column matrix. We define the map $\tilde{x} = \iota \circ x = xx^t$ from M into the set of $m \times m$ symmetric matrices and call it the quadric representation of M because the coordinates of \tilde{x} depend on the coordinates of x in a quadratic manner. Studying submanifolds with finite type quadric representation amounts to studying spectral behavior of the product of coordinate functions $x_i \cdot x_j$.

In this paper we extend the above result of Barros and Chen giving the classification of spherical hypersurfaces with 2-type quadric representation without assuming mass-symmetry a priori (Th. 3.1). We also

Received February 28, 1990