Токуо Ј. Матн. Vol. 13, No. 2, 1990

On the Existence and Smoothness of Invariant Manifolds of Semilinear Evolution Equations

Tatsuo ITOH

University of Tokyo (Communicated by S.T. Kuroda)

§1. Introduction.

Let us consider semilinear evolution equations in a Hilbert space X

(E)
$$du/dt = Lu + Nu$$
, $t > 0$.

Here L is the generator of an analytic semigroup and N is a nonlinear operator defined near 0. We suppose that the spectrum $\sigma(L)$ of L is divided into two parts $\sigma_1(L)$ and $\sigma_2(L)$ in such a way that

$$(\alpha_2 \equiv) \sup_{\sigma \in \sigma_2(L)} \operatorname{Re} \sigma < \inf_{\sigma \in \sigma_1(L)} \operatorname{Re} \sigma (\equiv \alpha_1) .$$

If N is identically zero, the eigenspace X_i , i=1, 2, corresponding to $\sigma_i(L)$ is invariant in the following sense: If an initial value x is contained in X_i then the solution u(t, x) of (E) with the initial value x is also contained in X_i for t>0.

In this paper we are interested in the persistency of the invariance and smoothness of the manifolds X_i under small perturbation N. Let N(x) be a C^k -mapping, $1 \leq k < \infty$, with N(0) = 0. We first ask if there exists an invariant manifold M_i "near X_i ", provided that $||D_xN||$ is small enough. $(D_xN$ denotes the Fréchet derivative of N(x) with respect to x.) If it does, we next ask if invariant manifolds are C^k .

The following facts have been known. See, e.g., [1-11, 14-17, 19-22].

(i) If $\inf_{\sigma \in \sigma_1(L)} \operatorname{Re} \sigma \geq 0$, then an invariant C^k -manifold M_1 "near X_1 " exists. It is called a center-unstable manifold. In particular, if $\inf_{\sigma \in \sigma_1(L)} \operatorname{Re} \sigma > 0$ (resp. $\operatorname{Re} \sigma = 0$ for $\sigma \in \sigma_1(L)$), then the manifold is called an unstable (resp. a center) manifold.

(ii) If $\sup_{\sigma \in \sigma_2(L)} \operatorname{Re} \sigma < 0$, then an invariant C^k -manifold "near X_2 " exists. Received February 8, 1990