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\S 1. Introduction.

Let us consider semilinear evolution equations in a Hilbert space $X$

(E) $du/dt=Lu+Nu$ , $t>0$ .
Here $L$ is the generator of an analytic semigroup and $N$ is a nonlinear
operator defined near $0$ . We suppose that the spectrum $\sigma(L)$ of $L$ is
divided into two parts $\sigma_{1}(L)$ and $\sigma_{2}(L)$ in such a way that

$(\alpha_{2}\equiv)\sup_{\sigma e\sigma_{2}(L)}{\rm Re}\sigma<\inf_{\sigma e\sigma,(L)}{\rm Re}\sigma(\equiv\alpha_{1})$ .

If $N$ is identically zero, the eigenspace $X_{i},$ $i=1,2$ , corresponding to $\sigma_{t}(L)$

is invariant in the following sense: If an initial value $x$ is contained in
$X_{i}$ then the solution $u(t, x)$ of (E) with the initial value $x$ is also con-
tained in $X_{i}$ for $t>0$ .

In this paper we are interested in the persistency of the invariance
and smoothness of the manifolds $X_{i}$ under small perturbation $N$. Let
$N(x)$ be a $C^{k}$-mapping, $ 1\leqq k<\infty$ , with $N(O)=0$ . We first ask if there
exists an invariant manifold $M$ “near $X_{i}’$ , provided that $\Vert D_{x}N\Vert$ is small
enough. ($D.N$ denotes the Fr\’echet derivative of $N(x)$ with respect to
$x.)$ If it does, we next ask if invariant manifolds are $C^{k}$ .

The following facts have been known. See, e.g., [1-11, 14-17,
19-22].
(i) If $\inf_{\sigma e\sigma_{1}(L)}{\rm Re}\sigma\geqq 0$ , then an invariant $C^{k}$-manifold $M_{1}$ “near $X_{1}$

“

exists. It is called a center-unstable manifold. In particular, if
$\inf_{\sigma e\sigma_{1}(L)}{\rm Re}\sigma>0$ (resp. ${\rm Re}\sigma=0$ for $\sigma\in\sigma_{1}(L)$), then the manifold is called
an unstable (resp. a center) manifold.
(ii) If $\sup_{\sigma e\sigma_{2}(L)}{\rm Re}\sigma<0$ , then an invariant $C^{k}$-manifold “near $X_{2}$

’ exists.

Received February 8, 1990


