Токуо Ј. Матн. Vol. 13, No. 2, 1990

Pitman Type Theorem for One-Dimensional Diffusion Processes

Yasumasa SAISHO* and Hideki TANEMURA

Kumamoto University and Chiba University (Communicated by M. Obata)

Introduction.

For a regular diffusion X in R starting from 0 with generator $\mathcal{L}=d/dm \cdot d/ds$, s(0)=0, and for any fixed r>0, define

$$au_1 = \inf\{t > 0: X(t) = r\}$$
,
 $au_2 = \sup\{t > 0: X(t) = 0, t < au_1\}$.

Then Williams's theorem ([4]) states that $\{X(\tau_2+t): 0 \le t \le \tau_1-\tau_2\}$ is identical in distribution to $\{\tilde{X}(t): 0 \le t \le \tilde{\tau}\}$, where \tilde{X} is a diffusion process starting from 0 with generator $\mathscr{L}f = (1/s)\mathscr{L}(sf)$ and $\tilde{\tau} = \inf\{t>0: \tilde{X}(t)=r\}$. In the case where X is a one-dimensional Brownian motion B with B(0)=0, \tilde{X} is a Bessel process with index 3 (the radial part of a three-dimensional Brownian motion) and Pitman [2] proved that

(1)
$$\{\tilde{X}(t), t \ge 0\} \stackrel{u}{=} \{B(t) + 2L(t), t \ge 0\}, \qquad L(t) = -\min_{0 \le u \le t} B(u),$$

where " $\stackrel{d}{=}$ " means the equality in distribution.

In this paper we consider the case where X is the one-dimensional diffusion process defined by the stochastic differential equation (abbreviated: SDE)

(2)
$$X(t) = \int_0^t \sigma(X(u)) dB(u) + \int_0^t b(X(u)) du ,$$

and will prove that \widetilde{X} admits a representation similar to (1) (see Theorem 1.1'). The assumptions for the coefficients σ and b are that they are Lipschitz continuous and $\sigma(x) > 0$, $\forall x \in \mathbf{R}$. To state our result more pre-

Received January 29, 1990 Revised April 16, 1990

* The first author was partially supported by Grant-in-Aid for Scientific Research (No. 01740131), Ministry of Education, Science and Culture.