Hilbert Spaces of Analytic Functions and the Gegenbauer Polynomials

Shigeru WATANABE
Sophia University
(Communicated by N. Iwahori)

Introduction.

Let \boldsymbol{F} be the Fock type Hilbert space of analytic functions $f(z)$ of n complex variables $z=\left(z_{1}, z_{2}, \cdots, z_{n}\right) \in C^{n}$, with the scalar product

$$
(f, g)=\pi^{-n} \int_{c^{n}} \overline{f(z)} g(z) \exp \left(-\left|z_{1}\right|^{2}-\cdots-\left|z_{n}\right|^{2}\right) d z_{1} \cdots d z_{n}
$$

with

$$
d z_{1} \cdots d z_{n}=d x_{1} \cdots d x_{n} d y_{1} \cdots d y_{n}, \quad z_{j}=x_{j}+i y_{j}
$$

and let \boldsymbol{H} be the usual Hilbert space $L^{2}\left(\boldsymbol{R}^{n}\right)$. Bargmann constructed in [1] a unitary mapping A from \boldsymbol{H} to \boldsymbol{F} given by an integral operator whose kernel is related in some definite sense to the Hermite polynomials. More precisely, $f=A \phi$ for $\phi \in \boldsymbol{H}$ is defined by

$$
f(z)=\int_{R^{n}} A(z, q) \phi(q) d^{n} q
$$

with

$$
A(z, q)=\pi^{-n / 4} \prod_{j=1}^{n} \exp \left\{-\frac{1}{2}\left(z_{j}^{2}+q_{j}^{2}\right)+2^{1 / 2} z_{j} q_{j}\right\}
$$

The purpose of the present paper is to show that similar constructions are possible for some other classical orthogonal polynomials.
§ 1. The arguments for the Gegenbauer polynomials.
Let λ be a positive real number. The Gegenbauer polynomials C_{m}^{2}, $m=0,1,2, \cdots$, are defined as the coefficients in the expansion

[^0]
[^0]: Received December 22, 1989

