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Introduction.

In [2], Hettling has proved that for any prime number $q$ there exist infinitely many
totally real abelian fields $F$ such that $q$ divides the orders of $K_{2}\mathcal{O}_{F}$ , Milnor’s $K_{2}$-groups
of the rings of integers in $F$ (cf. [4]), in discussing the divisibility properties of the
orders of these groups in certain cases. In this paper, we shall show that the prime $q$

in this proposition can be replaced by any integer $ n\in N\sim$. We shall use the same notations
as in [2], as explained in the following paragraph for completeness’ sake.
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\S 1. Notations and preliminaries.

$Form\in N$, let $\zeta_{m}$ beaprimitive m-th root of unity, and $q\zeta_{m})^{+}:$ $=\mathfrak{g}\zeta_{m}+\zeta_{m}^{-1}$ ) the
maximal totally real subfield of the full cyclotomic field $q\zeta_{m}$). For an arbitrary abelian
number field $F,$ $\mathcal{O}_{F}$ denotes its ring of integers, $\zeta_{F}$ the Dedekind zeta-function associated
to $F$, and $H$ the Dirichlet character group associated to $F$. For a character $\chi\in H$, let
$L(s, \chi)$ be the Dirichlet L-series associated to $\chi$ and $B_{i,\chi},$ $i=1,2,3,$ $\cdots$ the generalized
Bernoulli numbers. The ordinary Bernoulli numbers $B_{i}=B_{i,1}$ belong to the principal
character $\chi=1$ , refer to [7].

The Birch-Tate conjecture (cf. [1], [5]) states that

$\# K_{2}\mathcal{O}_{F}=|W_{2}(F)\cdot\zeta_{F}(-1)|$

for any totally real number field $F$, where

$ W_{2}(F):=\max${$m\in N|g^{2}=1$ for any element $g\in Ga1(F(\zeta_{m})/F)$}.
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