# On an Asymptotic Property of a Nonlinear Ordinary Differential Equation 

Shun SHIMOMURA

Keio University

## § 1. Introduction.

In the study of the fifth Painleve equation we treated an equation of the form

$$
\begin{equation*}
x\left(x u^{\prime}\right)^{\prime}=\frac{\alpha}{2} \tanh u \cosh ^{-2} u+\frac{\gamma}{4} x \sinh 2 u+\frac{\delta}{8} x^{2} \sinh 4 u \tag{1}
\end{equation*}
$$

(' $=d / d x$ ), where $\alpha, \gamma \in \boldsymbol{R}, \delta<0$. In [4] we studied an asymptotic behaviour of the solution $u=u_{0}(x)=u\left(x_{0}, u_{0}, u_{0}^{\prime} ; x\right)\left(x_{0}>0, u_{0}, u_{0}^{\prime} \in \boldsymbol{R}\right)$ as $x \rightarrow+\infty$ satisfying an initial condition

$$
\begin{equation*}
u_{0}\left(x_{0}\right)=u_{0}, \quad u_{0}^{\prime}\left(x_{0}\right)=u_{0}^{\prime} . \tag{2}
\end{equation*}
$$

In this paper we consider a more general nonlinear equation of the form

$$
\begin{equation*}
v^{\prime \prime}+v \Phi(x, v)=0 . \tag{3}
\end{equation*}
$$

Under some assumptions we prove that the solution $v=V(x)$ satisfying an initial condition as above can be prolonged over the interval $x_{0} \leq x<+\infty$, and we give an asymptotic expression of $V(x)$ as $x \rightarrow+\infty$. Analogous problems are studied in [1], [2] and [3].

## §2. Main result.

Let $r$ and $\varepsilon$ be positive constants. Consider an equation of the form

$$
\begin{equation*}
u^{\prime \prime}+u\left(1+x^{-1} p(u)+x^{-1-\varepsilon} f(x, u)\right)=0 \tag{4}
\end{equation*}
$$

satisfying the following conditions.
(A) $\quad p(u)$ is a polynomial of degree $2 n(\geq 0)$

$$
p(u)=\lambda_{0}+\lambda_{1} u+\cdots+\lambda_{2 n} u^{2 n}
$$

where

