Токуо Ј. Матн. Vol. 15, No. 1, 1992

Ring Derivations on Semi-Simple Commutative Banach Algebras

Osamu HATORI and Junzo WADA

Tokyo Medical College and Waseda University

Introduction.

Let A be a commutative Banach algebra. An (resp. linear) operator D on A is called a ring (resp. linear) derivation on A if equations D(f+g)=D(f)+D(g) and D(fg)=fD(g)+D(f)g are satisfied for every f and g in A. The image of linear derivation was studied by Singer and Wermer [5] under the hypothesis of continuity of the operator, and Thomas [6] has proved that every linear derivation on a commutative Banach algebra maps into the radical of the algebra. On the other hand there are ring derivations which do not map into the radical (cf. [1]). In this paper we characterize ring derivations on semi-simple commutative Banach algebras. A function algebra is semi-simple and so the results generalize our previous results in [3]. As a consequence of the results it is shown that only the zero operator is a ring derivation on a semi-simple commutative Banach algebra with the carrier space without an isolated point, which is a generalization of a theorem of Nandakumar [4].

1. Lemmata.

LEMMA 1. Let A be a commutative Banach algebra with the carrier space M_A . Suppose that D is a ring derivation on A. Then $(D(\alpha f))^{\hat{}} = \alpha(D(f))^{\hat{}}$ for every f in A and for every rational number α in the complex number field C, where $\hat{}$ denotes the Gel'fand representation.

PROOF. If α is a rational real number, then $D(\alpha f) = \alpha D(f)$ by standard argument. So we only show that $(D(if))^{2} = i(D(f))^{2}$, where *i* is the imaginary unit. For every *f* in *A*,

$$2fD(f) = D(f^2) = -D((if)^2) = -2ifD(if),$$

so we have $(D(f))^{(x)} = -i(D(if))^{(x)}$ for every x in M_A with $\hat{f}(x) \neq 0$. When $\hat{f}(x) = 0$, choose g in A with $\hat{g}(x) \neq 0$. In the same way we have $(D(g))^{(x)} = -i(D(ig))^{(x)}$ and $(D(f+g))^{(x)} = -i(D(i(f+g)))^{(x)}$ since $(f+g)^{(x)} = \hat{f}(x) + \hat{g}(x) \neq 0$, so

$$(D(f))^{(x)} + (D(g))^{(x)} = -i(D(if))^{(x)} - i(D(ig))^{(x)}.$$

Received May 8, 1991