Токуо Ј. Матн. Vol. 15, No. 1, 1992

The C^1 Uniform Pseudo-Orbit Tracing Property

Kazuhiro SAKAI

Kisarazu National College of Technology (Communicated by J. Tomiyama)

Introduction.

Let M be a closed C^{∞} manifold and denote by $\text{Diff}^1(M)$ the set of all diffeomorphisms of M endowed with the C^1 topology. For $\delta > 0$, a sequence $\{x_i\}_{i=a}^{b-1}$ $(-\infty \le a < b \le \infty)$ is called a δ -pseudo-orbit for $f \in \text{Diff}^1(M)$ if $d(f(x_i), x_{i+1}) < \delta$ for $a \le i \le b-1$, where d is a Riemannian distance on M. Given $\varepsilon > 0$, a sequence $\{x_i\}_{i=a}^{b}$ is said to be *f*- ε -traced by a point $x \in M$ if $d(f^i(x), x_i) < \varepsilon$ for $a \le i \le b$. We say that f has the pseudo-orbit tracing property (abbrev. POTP) if for $\varepsilon > 0$ there is $\delta > 0$ such that every δ -pseudo-orbit for f can be f- ε -traced by some point in M. For compact spaces these are independent of the compatible metrics used. We say that f satisfies C^1 uniform pseudo-orbit tracing property (abbrev. C^1 -UPOTP) if there is a C^1 neighborhood $\mathfrak{U}(f)$ of f with the property that for $\varepsilon > 0$ there is $\delta > 0$ such that every δ -pseudo-orbit of $g \in \mathfrak{U}(f)$ is g- ε -traced by some point. By definition it is checked that C^1 -UPOTP is stronger than POTP.

Robinson [5] proved that if $f \in \text{Diff}^1(M)$ satisfies Axiom A and strong transversality, then f has POTP. We show the following.

THEOREM. If $f \in \text{Diff}^1(M)$ satisfies Axiom A and strong transversality, then f satisfies C^1 -UPOTP.

Combining the above theorem and a result proved in [6] we have the following corollary.

COROLLARY. If the dimension of M is ≤ 3 , then the set of all diffeomorphisms having C^1 -UPOTP is characterized as the set of all Axiom A diffeomorphisms satisfying strong transversality.

§1. Preliminary results.

Let $\Omega(f)$ be the non-wandering set of an Axiom A diffeomorphism f. The local stable and unstable manifolds are defined by

Received February 20, 1991