On Wall Manifolds with Almost Free Z_{2k} Actions

Tamio HARA

Science University of Tokyo (Communicated by T. Nagano)

0. Introduction.

In order to understand the bordism classification of finite group actions on oriented manifolds, it is useful to consider some notion of manifolds with equivariant Wall structures. In [8], C. Kosniowski and E. Ossa studied the bordism theory $W_*(Z_2; All)$ of Wall manifolds with unrestricted involutions and determined completely the bordism theory $\Omega_*(Z_2; All)$ of oriented involutions, especially its torsion part as the image of the Bockstein homomorphism $\beta:W_*(Z_2; All) \to \Omega_*(Z_2; All)$. In this paper, we treat an almost free Z_{2k} action on Wall manifold, i.e., one for which only the $Z_2 \subset Z_{2k}$ may possibly fix points on manifold. From the viewpoint of action, such object is exactly Wall manifold with action of type $(Z_{2k}, 1)$ in [13].

In section 1, we study the bordism theory $W_*(Z_{2^k}; Af)$ of these objects. By the map which ignores Wall structures, the theories $W_*(Z_{2^k}; Free)$ and $W_*(Z_{2^k}; Af, Free)$ are derived from the corresponding unoriented theories as usual (Propositions 1.4 and 1.8). In particular, we have that $W_*(Z_{2^k}; Af, Free)$ is the sum of three parts; the images Im(t) of two kinds of extensions from Z_2 actions and another part \overline{L}_* . Using these results, we obtain the exact sequence for the triple $(Af, Free, \emptyset)$ (Proposition 1.11), and the W_* -module structure of $W_*(Z_{2^k}; Af)$ (Theorem 1.19). There the classes $\{V(0, 2n+2)\}$ (Definition 1.17) are useful to describe the part K_t which lies in $Im(t) \subset W_*(Z_{2^k}; Af, Free)$, while the part L_* is isomorphic to \overline{L}_* naturally.

In section 2, we describe the image \mathscr{T} of the map $\beta: W_*(Z_{2^k}; Af) \to \Omega_*(Z_{2^k}; Af)$; the bordism module of orientation preserving almost free Z_{2^k} actions, and describe the torsion part of order 2 (Theorem 2.3). As an application, we study the image of $I_*: \Omega_*(Z_4; Free) \to \Omega_*(Z_4; Af)$; the forgetful homomorphism by using the result of principal Z_{2^k} actions in [5] (Theorem 2.9).

The author would like to thank the referee for his many valuable comments.