Minimal Hypersurfaces Foliated by Geodesics of 4-Dimensional Space Forms

Makoto KIMURA

Saitama University

(Communicated by M. Sakai)

§0. Introduction.

Minimal surfaces of a 3-dimensional Euclidean space have been studied by many researchers. One of the most classic example of minimal surfaces is a helicoid. The helicoid is a ruled surface, i.e., a surface foliated by lines of \boldsymbol{R}^{3}. The following fact is well-known: minimal, ruled surface of \boldsymbol{R}^{3} is either a part of a plane \boldsymbol{R}^{2}, or a part of the helicoid (cf. [1]). Barbosa-Dajczer-Jorge [2] generalize this theorem to the ruled minimal submanifolds of higher dimensional space forms.

In this paper, we determine minimal hypersurfaces M given by $M=\left\{\exp _{p}(t \xi) ; p \in \Sigma\right.$, $t \in \boldsymbol{R}\}$, where Σ is a minimal surface of constant curvature in a 4-dimensional space form \tilde{M}, and ξ is a (local) unit normal vector field on Σ. Such a minimal surface Σ is classified by Kenmotsu [5]. In $\S 2$, we find the equations for a surface Σ and a unit normal vector field ξ on Σ with respect to which $M=\left\{\exp _{p}(t \xi) ; p \in \Sigma, t \in \boldsymbol{R}\right\}$ is minimal in \tilde{M}. In $\S 3, \S 4$, and $\S 5$, we solve the equations when Σ is totally geodesic in \tilde{M}, the minimal Clifford torus $S^{1} \times S^{1} \subset S^{3} \subset S^{4}$, and Σ is a Veronese surface of S^{4}, respectively. As a consequence, we find all minimal hypersurfaces M of S^{4} satisfying the following conditions (theorem 5.1): (1) M contains a Veronese surface Σ of S^{4}, (2) M is foliated by great circles S^{1} of S^{4} which intersect Σ orthogonally, (3) the type number (i.e., the rank of the shape operator) of M is equal to 3 on some open set which intersects Σ. The proof is reduced to solving a differential equation of a holomorphic function.

Concerning this theorem, we note that minimal hypersurfaces with type number 2 of n-dimensional space forms ($n \geqq 4$) are investigated by Dajczer-Gromoll [4]. In fact, such a minimal hypersurface is obtained by the image of a minimal surface under the Gauss map. But it seems that little is known about minimal hypersurfaces of S^{4} with type number 3, other than the generalized Clifford torus $S^{2} \times S^{1}$ (cf. [6], [7]).

[^0]
[^0]: Received April 10, 1992
 This research was partially supported by Grant-in-Aid for Scientific Research (No. 01740014), Ministry of Education, Science and Culture.

