Tokyo J. Math. Vol. 16, No. 1, 1993

Minimal Hypersurfaces Foliated by Geodesics of 4-Dimensional Space Forms

Makoto KIMURA

Saitama University (Communicated by M. Sakai)

§0. Introduction.

Minimal surfaces of a 3-dimensional Euclidean space have been studied by many researchers. One of the most classic example of minimal surfaces is a helicoid. The helicoid is a ruled surface, i.e., a surface foliated by lines of \mathbb{R}^3 . The following fact is well-known: minimal, ruled surface of \mathbb{R}^3 is either a part of a plane \mathbb{R}^2 , or a part of the helicoid (cf. [1]). Barbosa-Dajczer-Jorge [2] generalize this theorem to the ruled minimal submanifolds of higher dimensional space forms.

In this paper, we determine minimal hypersurfaces M given by $M = \{\exp_p(t\xi) ; p \in \Sigma, t \in \mathbb{R}\}$, where Σ is a minimal surface of constant curvature in a 4-dimensional space form \tilde{M} , and ξ is a (local) unit normal vector field on Σ . Such a minimal surface Σ is classified by Kenmotsu [5]. In §2, we find the equations for a surface Σ and a unit normal vector field ξ on Σ with respect to which $M = \{\exp_p(t\xi) ; p \in \Sigma, t \in \mathbb{R}\}$ is minimal in \tilde{M} . In §3, §4, and §5, we solve the equations when Σ is totally geodesic in \tilde{M} , the minimal Clifford torus $S^1 \times S^1 \subset S^3 \subset S^4$, and Σ is a Veronese surface of S^4 , respectively. As a consequence, we find all minimal hypersurfaces M of S^4 satisfying the following conditions (theorem 5.1): (1) M contains a Veronese surface Σ of S^4 , (2) M is foliated by great circles S^1 of S^4 which intersect Σ orthogonally, (3) the type number (i.e., the rank of the shape operator) of M is equal to 3 on some open set which intersects Σ . The proof is reduced to solving a differential equation of a holomorphic function.

Concerning this theorem, we note that minimal hypersurfaces with type number 2 of *n*-dimensional space forms $(n \ge 4)$ are investigated by Dajczer-Gromoll [4]. In fact, such a minimal hypersurface is obtained by the image of a minimal surface under the Gauss map. But it seems that little is known about minimal hypersurfaces of S^4 with type number 3, other than the generalized Clifford torus $S^2 \times S^1$ (cf. [6], [7]).

Received April 10, 1992

This research was partially supported by Grant-in-Aid for Scientific Research (No. 01740014), Ministry of Education, Science and Culture.