Tokyo J. Math. Vol. 16, No. 1, 1993

On the Iwasawa λ -Invariants of Real Quadratic Fields

Hisao TAYA

Waseda University (Communicated by Y. Shimizu)

Introduction.

Let k be a finite extension of the field of rational numbers Q and p a fixed prime number. A Galois extension K of k is called a Z_p -extension if the Galois group Gal(K/k)is topologically isomorphic to the additive group Z_p of the p-adic integers. Every number field k has at least one Z_p -extension, namely the cyclotomic Z_p -extension which is contained in the field obtained by adjoining all p-power roots of unity to k.

For a Z_p -extension

$$k = k_0 \subset k_1 \subset k_2 \subset \cdots \subset k_n \subset \cdots \subset K = \bigcup_{n=1}^{\infty} k_n$$

with Galois groups $\operatorname{Gal}(k_n/k) \simeq \mathbb{Z}/p^n \mathbb{Z}$, let h_n be the class number of k_n and p^{e_n} the exact power of p dividing h_n . Then Iwasawa has proved that there exist integers λ , μ and ν , depending only on K/k and p, such that $e_n = \lambda n + \mu p^n + \nu$ for all sufficiently large n. The integers $\lambda = \lambda_p(K/k)$, $\mu = \mu_p(K/k)$ and $\nu = \nu_p(K/k)$ are called the Iwasawa invariants of K/kfor p. For convenience, the Iwasawa invariants of the cyclotomic \mathbb{Z}_p -extension of k for p will be denoted by $\lambda_p(k)$, $\mu_p(k)$ and $\nu_p(k)$.

In [6], Greenberg stated the following conjecture concerning the Iwasawa invariants:

"If k is totally real, then both $\lambda_p(k)$ and $\mu_p(k)$ vanish."

It seems quite difficult to decide whether this conjecture is true, even for real quadratic fields.

Recently in [2], [3], [4] and [5], Fukuda and Komatsu studied Greenberg's conjecture in some real quadratic cases. They defined two invariants n_1 and n_2 in [4] (cf. Section 1), and treated the cases where $2 \le n_1 < n_2$ and $n_1 = 1$ in [3], [4] and the case where $n_1 = n_2 = 2$ in [2], [5] (See Addendum).

Received February 20, 1992

Revised September 16, 1992